Andrew B. Speer, Frederick L. Oswald, Dan J. Putka
{"title":"Reliability Evidence for AI-Based Scores in Organizational Contexts: Applying Lessons Learned From Psychometrics","authors":"Andrew B. Speer, Frederick L. Oswald, Dan J. Putka","doi":"10.1177/10944281251346404","DOIUrl":null,"url":null,"abstract":"Machine learning and artificial intelligence (AI) are increasingly used within organizational research and practice to generate scores representing constructs (e.g., social effectiveness) or behaviors/events (e.g., turnover probability). Ensuring the reliability of AI scores is critical in these contexts, and yet reliability estimates are reported in inconsistent ways, if at all. The current article critically examines reliability estimation for AI scores. We describe different uses of AI scores and how this informs the data and model needed for estimating reliability. Additionally, we distinguish between reliability and validity evidence within this context. We also highlight how the parallel test assumption is required when relying on correlations between AI scores and established measures as an index of reliability, and yet this assumption is frequently violated. We then provide methods that are appropriate for reliability estimation for AI scores that are sensitive to the generalizations one aims to make. In conclusion, we assert that AI reliability estimation is a challenging task that requires a thorough understanding of the issues presented, but a task that is essential to responsible AI work in organizational contexts.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"25 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281251346404","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning and artificial intelligence (AI) are increasingly used within organizational research and practice to generate scores representing constructs (e.g., social effectiveness) or behaviors/events (e.g., turnover probability). Ensuring the reliability of AI scores is critical in these contexts, and yet reliability estimates are reported in inconsistent ways, if at all. The current article critically examines reliability estimation for AI scores. We describe different uses of AI scores and how this informs the data and model needed for estimating reliability. Additionally, we distinguish between reliability and validity evidence within this context. We also highlight how the parallel test assumption is required when relying on correlations between AI scores and established measures as an index of reliability, and yet this assumption is frequently violated. We then provide methods that are appropriate for reliability estimation for AI scores that are sensitive to the generalizations one aims to make. In conclusion, we assert that AI reliability estimation is a challenging task that requires a thorough understanding of the issues presented, but a task that is essential to responsible AI work in organizational contexts.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.