{"title":"Bayesian KalmanNet: Quantifying Uncertainty in Deep Learning Augmented Kalman Filter","authors":"Yehonatan Dahan;Guy Revach;Jindrich Dunik;Nir Shlezinger","doi":"10.1109/TSP.2025.3581703","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed a growing interest in tracking algorithms that augment Kalman filters (KFs) with deep neural networks (DNNs). By transforming KFs into trainable deep learning models, one can learn from data to reliably track a latent state in complex and partially known dynamics. However, unlike classic KFs, conventional DNN-based systems do not naturally provide an uncertainty measure, such as error covariance, alongside their estimates, which is crucial in various applications that rely on KF-type tracking. This work bridges this gap by studying error covariance extraction in DNN-aided KFs. We begin by characterizing how uncertainty can be extracted from existing DNN-aided algorithms and distinguishing between approaches by their ability to associate internal features with meaningful KF quantities, such as the Kalman gain and prior covariance. We then identify that uncertainty extraction from existing architectures necessitates additional domain knowledge not required for state estimation. Based on this insight, we propose <italic>Bayesian KalmanNet</i>, a novel DNN-aided KF that integrates Bayesian deep learning techniques with the recently proposed KalmanNet and transforms the KF into a <italic>stochastic</i> machine learning architecture. This architecture employs sampling techniques to predict error covariance reliably without requiring additional domain knowledge, while retaining KalmanNet’s ability to accurately track in partially known dynamics. Our numerical study demonstrates that Bayesian KalmanNet provides accurate and reliable tracking in various scenarios representing partially known dynamic systems.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2558-2573"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11048390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11048390/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have witnessed a growing interest in tracking algorithms that augment Kalman filters (KFs) with deep neural networks (DNNs). By transforming KFs into trainable deep learning models, one can learn from data to reliably track a latent state in complex and partially known dynamics. However, unlike classic KFs, conventional DNN-based systems do not naturally provide an uncertainty measure, such as error covariance, alongside their estimates, which is crucial in various applications that rely on KF-type tracking. This work bridges this gap by studying error covariance extraction in DNN-aided KFs. We begin by characterizing how uncertainty can be extracted from existing DNN-aided algorithms and distinguishing between approaches by their ability to associate internal features with meaningful KF quantities, such as the Kalman gain and prior covariance. We then identify that uncertainty extraction from existing architectures necessitates additional domain knowledge not required for state estimation. Based on this insight, we propose Bayesian KalmanNet, a novel DNN-aided KF that integrates Bayesian deep learning techniques with the recently proposed KalmanNet and transforms the KF into a stochastic machine learning architecture. This architecture employs sampling techniques to predict error covariance reliably without requiring additional domain knowledge, while retaining KalmanNet’s ability to accurately track in partially known dynamics. Our numerical study demonstrates that Bayesian KalmanNet provides accurate and reliable tracking in various scenarios representing partially known dynamic systems.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.