{"title":"Free energy expansions of a conditional GinUE and large deviations of the smallest eigenvalue of the LUE","authors":"Sung-Soo Byun, Seong-Mi Seo, Meng Yang","doi":"10.1002/cpa.70005","DOIUrl":null,"url":null,"abstract":"<p>We consider a planar Coulomb gas ensemble of size <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> with the inverse temperature <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\beta =2$</annotation>\n </semantics></math> and external potential <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mrow>\n <mo>(</mo>\n <mi>z</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>z</mi>\n <mo>|</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <mn>2</mn>\n <mi>c</mi>\n <mi>log</mi>\n <mrow>\n <mo>|</mo>\n <mi>z</mi>\n <mo>−</mo>\n <mi>a</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$Q(z)=|z|^2-2c \\log |z-a|$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$c>0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∈</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$a \\in \\mathbb {C}$</annotation>\n </semantics></math>. Equivalently, this model can be realised as <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> eigenvalues of the complex Ginibre matrix of size <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>c</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mi>N</mi>\n <mo>×</mo>\n <mo>(</mo>\n <mi>c</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n <mi>N</mi>\n </mrow>\n <annotation>$(c+1) N \\times (c+1) N$</annotation>\n </semantics></math> conditioned to have deterministic eigenvalue <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math> with multiplicity <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$cN$</annotation>\n </semantics></math>. Depending on the values of <span></span><math>\n <semantics>\n <mi>c</mi>\n <annotation>$c$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math>, the droplet reveals a phase transition: it is doubly connected in the post-critical regime and simply connected in the pre-critical regime. In both regimes, we derive precise large-<span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math> expansions of the free energy up to the <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$O(1)$</annotation>\n </semantics></math> term, providing a non-radially symmetric example that confirms the Zabrodin–Wiegmann conjecture made for general planar Coulomb gas ensembles. As a consequence, our results provide asymptotic behaviour of moments of the characteristic polynomial of the complex Ginibre matrix, where the powers are of order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$O(N)$</annotation>\n </semantics></math>. Furthermore, by combining with a duality formula, we obtain precise large deviation probabilities of the smallest eigenvalue of the Laguerre unitary ensemble. A key ingredient for the proof lies in the fine asymptotic behaviour of a planar orthogonal polynomial, extending a result of Betola et al. This result holds its own interest and is based on a refined Riemann–Hilbert analysis using the partial Schlesinger transform.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 12","pages":"2247-2304"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.70005","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a planar Coulomb gas ensemble of size with the inverse temperature and external potential , where and . Equivalently, this model can be realised as eigenvalues of the complex Ginibre matrix of size conditioned to have deterministic eigenvalue with multiplicity . Depending on the values of and , the droplet reveals a phase transition: it is doubly connected in the post-critical regime and simply connected in the pre-critical regime. In both regimes, we derive precise large- expansions of the free energy up to the term, providing a non-radially symmetric example that confirms the Zabrodin–Wiegmann conjecture made for general planar Coulomb gas ensembles. As a consequence, our results provide asymptotic behaviour of moments of the characteristic polynomial of the complex Ginibre matrix, where the powers are of order . Furthermore, by combining with a duality formula, we obtain precise large deviation probabilities of the smallest eigenvalue of the Laguerre unitary ensemble. A key ingredient for the proof lies in the fine asymptotic behaviour of a planar orthogonal polynomial, extending a result of Betola et al. This result holds its own interest and is based on a refined Riemann–Hilbert analysis using the partial Schlesinger transform.