Irakli Giorgadze, Haixuan Huang, Jordan Gaines, Elio J. König, Jukka I. Väyrynen
{"title":"Characterizing maximally many-body entangled fermionic states by using $M$-body density matrix","authors":"Irakli Giorgadze, Haixuan Huang, Jordan Gaines, Elio J. König, Jukka I. Väyrynen","doi":"10.22331/q-2025-06-24-1778","DOIUrl":null,"url":null,"abstract":"Fermionic Hamiltonians play a critical role in quantum chemistry, one of the most promising use cases for near-term quantum computers. However, since encoding nonlocal fermionic statistics using conventional qubits results in significant computational overhead, fermionic quantum hardware, such as fermion atom arrays, were proposed as a more efficient platform. In this context, we here study the many-body entanglement structure of fermionic $N$-particle states by concentrating on $M$-body reduced density matrices (DMs) across various bipartitions in Fock space. The von Neumann entropy of the reduced DM is a basis independent entanglement measure which generalizes the traditional quantum chemistry concept of the one-particle DM entanglement, which characterizes how a single fermion is entangled with the rest. We carefully examine upper bounds on the $M$-body entanglement, which are analogous to the volume law of conventional entanglement measures. To this end we establish a connection between $M$-body reduced DM and the mathematical structure of hypergraphs. Specifically, we show that a special class of hypergraphs, known as $t$-designs, corresponds to maximally entangled fermionic states. Finally, we explore fermionic many-body entanglement in random states. We semianalytically demonstrate that the distribution of reduced DMs associated with random fermionic states corresponds to the trace-fixed Wishart-Laguerre random matrix ensemble. In the limit of large single-particle dimension $D$ and a non-zero filling fraction, random states asymptotically become absolutely maximally entangled.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"25 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-06-24-1778","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fermionic Hamiltonians play a critical role in quantum chemistry, one of the most promising use cases for near-term quantum computers. However, since encoding nonlocal fermionic statistics using conventional qubits results in significant computational overhead, fermionic quantum hardware, such as fermion atom arrays, were proposed as a more efficient platform. In this context, we here study the many-body entanglement structure of fermionic $N$-particle states by concentrating on $M$-body reduced density matrices (DMs) across various bipartitions in Fock space. The von Neumann entropy of the reduced DM is a basis independent entanglement measure which generalizes the traditional quantum chemistry concept of the one-particle DM entanglement, which characterizes how a single fermion is entangled with the rest. We carefully examine upper bounds on the $M$-body entanglement, which are analogous to the volume law of conventional entanglement measures. To this end we establish a connection between $M$-body reduced DM and the mathematical structure of hypergraphs. Specifically, we show that a special class of hypergraphs, known as $t$-designs, corresponds to maximally entangled fermionic states. Finally, we explore fermionic many-body entanglement in random states. We semianalytically demonstrate that the distribution of reduced DMs associated with random fermionic states corresponds to the trace-fixed Wishart-Laguerre random matrix ensemble. In the limit of large single-particle dimension $D$ and a non-zero filling fraction, random states asymptotically become absolutely maximally entangled.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.