{"title":"Biotechnological Advances in L-DOPA Biosynthesis and Production","authors":"Hongmei Han, Yue Chen, Lingtian Wu, Yongsheng Wang, Yibo Zhu","doi":"10.1002/bit.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p><span>l</span>-DOPA (3,4-dihydroxyphenyl-<span>l</span>-alanine) has been the primary medication for treating Parkinson's disease (PD), a degenerative brain disorder related to dopamine depletion, for the past six decades. As a result, biotechnological approaches utilizing metabolic engineering in microorganisms or enzymatic processes have been extensively explored as promising alternatives for <span>l</span>-DOPA production. These methods not only enhance conversion efficiency and enantioselectivity but are also cost-effective and environmentally sustainable. Metabolic engineering strategies have been employed to engineer <i>Escherichia coli</i> strains capable of accumulating <span>l</span>-DOPA from glucose by regulating carbon metabolism pathways. Additionally, microbial systems expressing tyrosinase, <i>p</i>-hydroxyphenylacetate 3-hydroxylase (PHAH), or tyrosine phenol-lyase (TPL) have been utilized for <span>l</span>-DOPA biosynthesis. In this review, we summarize current advancements in <span>l</span>-DOPA biosynthesis and biotechnological production strategies, providing a comparative analysis of their advantages and limitations. Moreover, we discuss the promise of biotech-driven <span>l</span>-DOPA production, emphasizing its industrial applications and large-scale production feasibility.</p>\n </div>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 10","pages":"2615-2624"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bit.70011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
l-DOPA (3,4-dihydroxyphenyl-l-alanine) has been the primary medication for treating Parkinson's disease (PD), a degenerative brain disorder related to dopamine depletion, for the past six decades. As a result, biotechnological approaches utilizing metabolic engineering in microorganisms or enzymatic processes have been extensively explored as promising alternatives for l-DOPA production. These methods not only enhance conversion efficiency and enantioselectivity but are also cost-effective and environmentally sustainable. Metabolic engineering strategies have been employed to engineer Escherichia coli strains capable of accumulating l-DOPA from glucose by regulating carbon metabolism pathways. Additionally, microbial systems expressing tyrosinase, p-hydroxyphenylacetate 3-hydroxylase (PHAH), or tyrosine phenol-lyase (TPL) have been utilized for l-DOPA biosynthesis. In this review, we summarize current advancements in l-DOPA biosynthesis and biotechnological production strategies, providing a comparative analysis of their advantages and limitations. Moreover, we discuss the promise of biotech-driven l-DOPA production, emphasizing its industrial applications and large-scale production feasibility.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.