Ectopic expression of wax ester synthase under a wood-specific promoter enhances cell wall production and wood hydrophobicity

IF 6.1 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ashkan Amirkhosravi, Gerrit-Jan Strijkstra, Alisa Keyl, Linus Heydenreich, Cornelia Herrfurth, Ivo Feussner, Andrea Polle
{"title":"Ectopic expression of wax ester synthase under a wood-specific promoter enhances cell wall production and wood hydrophobicity","authors":"Ashkan Amirkhosravi,&nbsp;Gerrit-Jan Strijkstra,&nbsp;Alisa Keyl,&nbsp;Linus Heydenreich,&nbsp;Cornelia Herrfurth,&nbsp;Ivo Feussner,&nbsp;Andrea Polle","doi":"10.1186/s13068-025-02667-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Many industrial applications of wood and woody biomass require harsh physicochemical pretreatments to improve the hydrophobicity and durability of the products. Environmentally friendly wood biorefineries necessitate the replacement of chemicals and energy-consuming wood processing. Here, our goal was to increase wood hydrophobicity via the ectopic expression of Jojoba (<i>Simmondsia chinensis</i>) wax ester synthase (<i>ScWS</i>) in poplar (<i>Populus</i> × <i>canescens</i>). We expressed <i>ScWS</i> under a wood-specific promoter (<i>DX15</i>), which naturally controls the expression of <i>FASCICLIN-like ARABINOGALACTAN PROTEIN 15</i> (<i>FLA15</i>) in the xylem.</p><h3>Results</h3><p>In the <i>DX15::ScWS</i> lines, <i>ScWS</i> was highly expressed in wood but not in leaves. The transgenic lines exhibited normal photosynthesis and growth similar to the wild-type poplars. Compared with the wild-type poplars, the <i>DX15::ScWS</i> lines accumulated greater amounts of triacylglycerol in wood and a greater number of lipid droplets in ray parenchyma cells. The composition of the bark cuticle wax esters was unaffected. The wood of the <i>DX15::ScWS</i> lines showed greater water repellency and less swelling than that of the wild-type poplars. Furthermore, the <i>DX15::ScWS</i> lines had an increased expression of <i>FLA15</i> and increased cell wall deposition in fibers, resulting in increased wood density.</p><h3>Conclusions</h3><p>Our results highlight the potential of combining the wood-specific <i>DX15</i> promoter with <i>ScWS</i> to enhance the technological properties of poplar wood. Reduced wood hydrophilicity represents a significant improvement in wood quality. In addition, our results suggest that the overexpression of the <i>DX15</i> promoter could be a promising strategy for improving lignocellulose biomass in plants. Since poplars are highly productive species that can be cultivated in short-rotation plantations, our results have high translational potential for advancing sustainable wood utilization for a wider range of applications.</p></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12182671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02667-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Many industrial applications of wood and woody biomass require harsh physicochemical pretreatments to improve the hydrophobicity and durability of the products. Environmentally friendly wood biorefineries necessitate the replacement of chemicals and energy-consuming wood processing. Here, our goal was to increase wood hydrophobicity via the ectopic expression of Jojoba (Simmondsia chinensis) wax ester synthase (ScWS) in poplar (Populus × canescens). We expressed ScWS under a wood-specific promoter (DX15), which naturally controls the expression of FASCICLIN-like ARABINOGALACTAN PROTEIN 15 (FLA15) in the xylem.

Results

In the DX15::ScWS lines, ScWS was highly expressed in wood but not in leaves. The transgenic lines exhibited normal photosynthesis and growth similar to the wild-type poplars. Compared with the wild-type poplars, the DX15::ScWS lines accumulated greater amounts of triacylglycerol in wood and a greater number of lipid droplets in ray parenchyma cells. The composition of the bark cuticle wax esters was unaffected. The wood of the DX15::ScWS lines showed greater water repellency and less swelling than that of the wild-type poplars. Furthermore, the DX15::ScWS lines had an increased expression of FLA15 and increased cell wall deposition in fibers, resulting in increased wood density.

Conclusions

Our results highlight the potential of combining the wood-specific DX15 promoter with ScWS to enhance the technological properties of poplar wood. Reduced wood hydrophilicity represents a significant improvement in wood quality. In addition, our results suggest that the overexpression of the DX15 promoter could be a promising strategy for improving lignocellulose biomass in plants. Since poplars are highly productive species that can be cultivated in short-rotation plantations, our results have high translational potential for advancing sustainable wood utilization for a wider range of applications.

蜡酯合成酶在木材特异性启动子下的异位表达增强了细胞壁的生成和木材的疏水性。
背景:木材和木质生物质的许多工业应用需要严格的物理化学预处理,以提高产品的疏水性和耐久性。环境友好型木材生物精炼厂需要替代化学品和消耗能源的木材加工。本研究的目的是通过异位表达荷荷巴蜡酯合成酶(ScWS)在杨树(Populus × canescens)中的表达来提高木材的疏水性。我们在木材特异性启动子(DX15)下表达了ScWS,该启动子自然地控制木质部中fasiclin样阿拉伯半乳糖蛋白15 (FLA15)的表达。结果:在DX15::ScWS系中,ScWS在木材中高表达,而在叶片中不表达。转基因系表现出与野生型相似的正常光合作用和生长。与野生型相比,DX15::ScWS系在木材中积累了更多的甘油三酯,在射线薄壁细胞中积累了更多的脂滴。树皮角质层蜡酯的组成不受影响。与野生型相比,DX15::ScWS品系的木材具有更强的拒水性和更小的溶胀性。此外,DX15::ScWS株系FLA15的表达增加,纤维细胞壁沉积增加,导致木材密度增加。结论:我们的研究结果强调了将木材特异性DX15启动子与ScWS结合在一起提高杨木工艺性能的潜力。木材亲水性的降低代表了木材质量的显著改善。此外,我们的研究结果表明,过表达DX15启动子可能是提高植物木质纤维素生物量的一种有希望的策略。由于杨树是可以在短轮作人工林中栽培的高产树种,因此我们的研究结果在促进木材可持续利用方面具有很高的转化潜力,可用于更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology for Biofuels
Biotechnology for Biofuels 工程技术-生物工程与应用微生物
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass. Biotechnology for Biofuels focuses on the following areas: • Development of terrestrial plant feedstocks • Development of algal feedstocks • Biomass pretreatment, fractionation and extraction for biological conversion • Enzyme engineering, production and analysis • Bacterial genetics, physiology and metabolic engineering • Fungal/yeast genetics, physiology and metabolic engineering • Fermentation, biocatalytic conversion and reaction dynamics • Biological production of chemicals and bioproducts from biomass • Anaerobic digestion, biohydrogen and bioelectricity • Bioprocess integration, techno-economic analysis, modelling and policy • Life cycle assessment and environmental impact analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信