{"title":"Mitochondrial Energy Metabolic Reprogramming Facilitates the Malignant Progression of Intrahepatic Cholangiocarcinoma.","authors":"Jun-Long Wang, Yu-Chen Pei, Qi-Zhi Liang, Xi Yu, Jia-Yi Cai, Nian-Dong Yi, Wei-Gen Wu, Yu-Ze Wang, Qi Liu, Wei Chen","doi":"10.1002/mc.23930","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial function plays a crucial role in cancer development, with mitochondrial energy metabolism-related genes (MEMRGs) contributing to carcinogenesis. This study investigates the role of MEMRGs in intrahepatic cholangiocarcinoma (ICC) by analyzing RNA-seq data from TCGA and GEO databases to identify differentially expressed MEMRGs. Functional enrichment and KEGG pathway analyses revealed their significant involvement in metabolic pathways. Using weighted gene co-expression network analysis (WGCNA) and consensus clustering, two distinct ICC subtypes were identified. Tumor mutational burden (TMB), immune cell infiltration, and immune escape potential were assessed, highlighting the importance of the Hippo/YAP pathway. Cox regression analyses pinpointed key prognostic genes, including ADH1A, ADH1B, and CYP4A11. A MEMRG-based nomogram was developed that accurately predicted 1- and 3-year survival outcomes. Experimental validation showed that ADH1B suppresses ICC malignancy through the Hippo/YAP pathway. These findings suggest that MEMRGs are vital in ICC progression and immune regulation, serving as promising prognostic biomarkers and therapeutic targets, though further validation is required.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23930","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial function plays a crucial role in cancer development, with mitochondrial energy metabolism-related genes (MEMRGs) contributing to carcinogenesis. This study investigates the role of MEMRGs in intrahepatic cholangiocarcinoma (ICC) by analyzing RNA-seq data from TCGA and GEO databases to identify differentially expressed MEMRGs. Functional enrichment and KEGG pathway analyses revealed their significant involvement in metabolic pathways. Using weighted gene co-expression network analysis (WGCNA) and consensus clustering, two distinct ICC subtypes were identified. Tumor mutational burden (TMB), immune cell infiltration, and immune escape potential were assessed, highlighting the importance of the Hippo/YAP pathway. Cox regression analyses pinpointed key prognostic genes, including ADH1A, ADH1B, and CYP4A11. A MEMRG-based nomogram was developed that accurately predicted 1- and 3-year survival outcomes. Experimental validation showed that ADH1B suppresses ICC malignancy through the Hippo/YAP pathway. These findings suggest that MEMRGs are vital in ICC progression and immune regulation, serving as promising prognostic biomarkers and therapeutic targets, though further validation is required.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.