Shiri Karagach, Joachim Smollich, Ofir Atrakchi, Vishnu Mohan, Tamar Geiger
{"title":"High throughput single-cell proteomics of in vivo cells.","authors":"Shiri Karagach, Joachim Smollich, Ofir Atrakchi, Vishnu Mohan, Tamar Geiger","doi":"10.1016/j.mcpro.2025.101018","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell mass spectrometry-based proteomics (SCP) can resolve cellular heterogeneity in complex biological systems and provide a system-level view of the proteome of each cell. Major advancements in SCP methodologies have been introduced in recent years, providing highly sensitive sample preparation methods and mass spectrometric technologies. However, most studies present limited throughput and mainly focus on the analysis of cultured cells. To enhance the depth, accuracy, and throughput of SCP for tumor analysis, we developed an automated, high-throughput pipeline that enables the analysis of 1,536 single cells in a single experiment. This approach integrates low-volume sample preparation, automated sample purification, and LC-MS analysis with the Slice-PASEF method. Integration of these methodologies into a streamlined pipeline led to a robust and reproducible identification of more than 3000 proteins per cell. We applied this pipeline to analyze tumor macrophages in a murine lung metastasis model. We identified over 1,700 proteins per cell, including key macrophage markers and more than 500 differentially expressed proteins between tumor and control macrophages. PCA analysis successfully separated these populations, revealing the utility of SCP in capturing biologically relevant signals in the tumor microenvironment. Our results demonstrate a robust and scalable pipeline poised to advance single-cell proteomics in cancer research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"101018"},"PeriodicalIF":6.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.101018","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell mass spectrometry-based proteomics (SCP) can resolve cellular heterogeneity in complex biological systems and provide a system-level view of the proteome of each cell. Major advancements in SCP methodologies have been introduced in recent years, providing highly sensitive sample preparation methods and mass spectrometric technologies. However, most studies present limited throughput and mainly focus on the analysis of cultured cells. To enhance the depth, accuracy, and throughput of SCP for tumor analysis, we developed an automated, high-throughput pipeline that enables the analysis of 1,536 single cells in a single experiment. This approach integrates low-volume sample preparation, automated sample purification, and LC-MS analysis with the Slice-PASEF method. Integration of these methodologies into a streamlined pipeline led to a robust and reproducible identification of more than 3000 proteins per cell. We applied this pipeline to analyze tumor macrophages in a murine lung metastasis model. We identified over 1,700 proteins per cell, including key macrophage markers and more than 500 differentially expressed proteins between tumor and control macrophages. PCA analysis successfully separated these populations, revealing the utility of SCP in capturing biologically relevant signals in the tumor microenvironment. Our results demonstrate a robust and scalable pipeline poised to advance single-cell proteomics in cancer research.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes