Prediction of biological evolution following blood product transfusion during liver transplantation: the contribution of machine learning to decision-making.

IF 4.4 Q1 HEALTH CARE SCIENCES & SERVICES
Olivier Duranteau, Benjamin Popoff, Axel Abels, Valerio Lucidi, Eric Savier, Florian Blanchard, Thibault Martinez, Patrizia Loi, Desislava Germanova, Anne Demulder, Jacques Creteur, Turgay Tuna
{"title":"Prediction of biological evolution following blood product transfusion during liver transplantation: the contribution of machine learning to decision-making.","authors":"Olivier Duranteau, Benjamin Popoff, Axel Abels, Valerio Lucidi, Eric Savier, Florian Blanchard, Thibault Martinez, Patrizia Loi, Desislava Germanova, Anne Demulder, Jacques Creteur, Turgay Tuna","doi":"10.1136/bmjhci-2025-101466","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Liver transplantation is a complex procedure frequently requiring transfusion of blood products to manage coagulopathy and haemorrhage. This study aimed to develop machine learning models to predict the biological effects of blood product transfusions, assisting clinicians in selecting optimal therapeutic combinations.</p><p><strong>Methods: </strong>Using data from two cohorts over 20 years from two academic hospitals, 10 supervised machine learning models were trained and validated on four biomarkers: fibrinogen, haemoglobin, prothrombin time and activated partial thromboplastin time ratio. Models were evaluated using R², root mean squared error and SD metrics, with external validation performed on the second cohort.</p><p><strong>Results: </strong>The results indicated that while certain models, such as the stack model for late fibrinogen (R²=0.63) or the extra trees model for late prothrombin time (R²=0.66), demonstrated promising predictive capacity, the overall external validation performance was suboptimal. Despite the use of a large healthcare database, a rigorous statistical methodology and an academic machine learning methodology, most models showed limited generalisability (R² < 0.5).</p><p><strong>Discussion: </strong>Key limitations included the small dataset size relative to machine learning requirements, lack of advanced haemostatic parameters (eg, ROtational ThromboElastoMetry (ROTEM) or Thromboelastography (TEG)) and the variability introduced by evolving surgical practices over the 20-year study period. Despite these limitations, this study provides a reproducible framework for evaluating transfusion efficacy, supported by openly shared Python code and the application of Taylor diagrams for model evaluation.</p><p><strong>Conclusion: </strong>While our models are unsuitable for routine clinical use, they highlight the potential of machine learning in transfusion medicine. Future work should focus on integrating larger datasets, advanced biomarkers and real-time data.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2025-101466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Liver transplantation is a complex procedure frequently requiring transfusion of blood products to manage coagulopathy and haemorrhage. This study aimed to develop machine learning models to predict the biological effects of blood product transfusions, assisting clinicians in selecting optimal therapeutic combinations.

Methods: Using data from two cohorts over 20 years from two academic hospitals, 10 supervised machine learning models were trained and validated on four biomarkers: fibrinogen, haemoglobin, prothrombin time and activated partial thromboplastin time ratio. Models were evaluated using R², root mean squared error and SD metrics, with external validation performed on the second cohort.

Results: The results indicated that while certain models, such as the stack model for late fibrinogen (R²=0.63) or the extra trees model for late prothrombin time (R²=0.66), demonstrated promising predictive capacity, the overall external validation performance was suboptimal. Despite the use of a large healthcare database, a rigorous statistical methodology and an academic machine learning methodology, most models showed limited generalisability (R² < 0.5).

Discussion: Key limitations included the small dataset size relative to machine learning requirements, lack of advanced haemostatic parameters (eg, ROtational ThromboElastoMetry (ROTEM) or Thromboelastography (TEG)) and the variability introduced by evolving surgical practices over the 20-year study period. Despite these limitations, this study provides a reproducible framework for evaluating transfusion efficacy, supported by openly shared Python code and the application of Taylor diagrams for model evaluation.

Conclusion: While our models are unsuitable for routine clinical use, they highlight the potential of machine learning in transfusion medicine. Future work should focus on integrating larger datasets, advanced biomarkers and real-time data.

肝移植过程中输血后生物进化预测:机器学习对决策的贡献。
目的:肝移植是一项复杂的手术,经常需要输血来治疗凝血功能障碍和出血。本研究旨在开发机器学习模型来预测血液制品输血的生物学效应,帮助临床医生选择最佳的治疗组合。方法:使用来自两家学术医院20多年的两个队列数据,对10个监督机器学习模型进行了训练并验证了四个生物标志物:纤维蛋白原、血红蛋白、凝血酶原时间和活化的部分凝血活酶时间比。使用R²、均方根误差和SD指标对模型进行评估,并对第二队列进行外部验证。结果表明,虽然某些模型,如纤维蛋白原晚期的堆叠模型(R²=0.63)或凝血酶原晚期的额外树模型(R²=0.66),显示出良好的预测能力,但整体外部验证性能不是最优的。尽管使用了大型医疗保健数据库、严格的统计方法和学术机器学习方法,但大多数模型的通用性有限(R²< 0.5)。讨论:主要限制包括相对于机器学习要求的小数据集大小,缺乏先进的止血参数(例如,旋转血栓弹性测量(ROTEM)或血栓弹性成像(TEG)),以及在20年的研究期间不断发展的外科实践所带来的可变性。尽管有这些限制,这项研究提供了一个可重复的框架来评估输血疗效,由公开共享的Python代码和用于模型评估的泰勒图的应用支持。结论:虽然我们的模型不适合常规临床使用,但它们突出了机器学习在输血医学中的潜力。未来的工作应该集中在整合更大的数据集、先进的生物标志物和实时数据上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信