Crystalline Structure Engineering of Metal Sulfides Toward Advanced Sodium-Ion Storage

Xi Chen, Sainan Kong, Dongxu Yu, Yongqun Ma, Fuxing Shen, Xing Xu, Jun Chen, Chengdu Liang, Liguang Wang
{"title":"Crystalline Structure Engineering of Metal Sulfides Toward Advanced Sodium-Ion Storage","authors":"Xi Chen,&nbsp;Sainan Kong,&nbsp;Dongxu Yu,&nbsp;Yongqun Ma,&nbsp;Fuxing Shen,&nbsp;Xing Xu,&nbsp;Jun Chen,&nbsp;Chengdu Liang,&nbsp;Liguang Wang","doi":"10.1002/cnl2.70019","DOIUrl":null,"url":null,"abstract":"<p>Transition metal sulfides (TMSs) have garnered significant attention due to their unique physiochemical properties and high theoretical capacities. However, their poor intrinsic electronic conductivity hinders reaction kinetics. In this study, we propose a strategy of crystalline structure engineering to achieve metallic electronic conductivity, thereby significantly enhancing the electrochemical reaction kinetics during sodium-ion storage. Our findings reveal that iron sulfides with different crystal structures exhibit distinct electrochemical behaviors in sodium-ion batteries. Specifically, the metallic-phase tetragonal FeS, characterized by its layered structure, demonstrates superior electronic conductivity, electrochemical reversibility, and fast reaction kinetics. These attributes result in a markedly higher sodium storage capacity and faster electrochemical reactivity compared to semiconducting hexagonal FeS. This study introduces a critical strategy for designing next-generation sodium storage anodes with improved electrochemical performance.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal sulfides (TMSs) have garnered significant attention due to their unique physiochemical properties and high theoretical capacities. However, their poor intrinsic electronic conductivity hinders reaction kinetics. In this study, we propose a strategy of crystalline structure engineering to achieve metallic electronic conductivity, thereby significantly enhancing the electrochemical reaction kinetics during sodium-ion storage. Our findings reveal that iron sulfides with different crystal structures exhibit distinct electrochemical behaviors in sodium-ion batteries. Specifically, the metallic-phase tetragonal FeS, characterized by its layered structure, demonstrates superior electronic conductivity, electrochemical reversibility, and fast reaction kinetics. These attributes result in a markedly higher sodium storage capacity and faster electrochemical reactivity compared to semiconducting hexagonal FeS. This study introduces a critical strategy for designing next-generation sodium storage anodes with improved electrochemical performance.

Abstract Image

面向先进钠离子存储的金属硫化物晶体结构工程
过渡金属硫化物(tms)由于其独特的物理化学性质和较高的理论容量而受到广泛关注。然而,它们较差的本征电导率阻碍了反应动力学。在本研究中,我们提出了一种晶体结构工程策略来实现金属电子导电性,从而显著提高钠离子存储过程中的电化学反应动力学。研究结果表明,不同晶体结构的硫化铁在钠离子电池中表现出不同的电化学行为。具体而言,金属相四方FeS具有层状结构,具有优异的电子导电性、电化学可逆性和快速反应动力学。与半导体六方FeS相比,这些特性导致了更高的钠存储容量和更快的电化学反应性。本研究介绍了一种设计具有改进电化学性能的下一代钠存储阳极的关键策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信