{"title":"Exosomal miRNAs in muscle-bone crosstalk: Mechanistic links, exercise modulation and implications for sarcopenia, osteoporosis and osteosarcopenia","authors":"Bo Zhang, Yang Chen, Qiaojie Chen, Haijun Zhang","doi":"10.1016/j.metabol.2025.156333","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates the emerging role of exosomal microRNAs (miRNAs) as pivotal mediators of bidirectional communication between the skeletal muscle and bone tissue, with significant implications for age-related musculoskeletal disorders. In aging populations, sarcopenia often coexists with osteoporosis, forming osteosarcopenia, which markedly increases fracture risk, disability, and mortality. While traditional paradigms emphasize mechanical loading and endocrine pathways, emerging evidence has revealed that exosomes carrying bioactive miRNAs represent a novel class of paracrine factors in the muscle-bone axis. We examined how muscle-derived exosomal miRNAs (miR-34a and miR-27a-3p) influence bone metabolism, while bone-derived exosomal miRNAs (miR-486-5p) modulate muscle physiology. For each miRNA, we identified the target messenger RNAs (mRNAs) and signaling mechanisms. Importantly, exercise has emerged as a potent modulator of this crosstalk, altering exosomal miRNA profiles to promote anabolic outcomes in both tissues. This bidirectional communication contributes to osteosarcopenia pathophysiology, leading us to propose a novel “Exosomal miRNA Regulatory Network” for diagnosis and pathogenesis. Exosomal miRNAs show promise as early biomarkers for subclinical deterioration and therapeutic targets. However, methodological challenges in exosome isolation, incomplete characterization of miRNA networks, and aging complexity must be addressed before clinical implementation.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"170 ","pages":"Article 156333"},"PeriodicalIF":10.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049525002021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
This review investigates the emerging role of exosomal microRNAs (miRNAs) as pivotal mediators of bidirectional communication between the skeletal muscle and bone tissue, with significant implications for age-related musculoskeletal disorders. In aging populations, sarcopenia often coexists with osteoporosis, forming osteosarcopenia, which markedly increases fracture risk, disability, and mortality. While traditional paradigms emphasize mechanical loading and endocrine pathways, emerging evidence has revealed that exosomes carrying bioactive miRNAs represent a novel class of paracrine factors in the muscle-bone axis. We examined how muscle-derived exosomal miRNAs (miR-34a and miR-27a-3p) influence bone metabolism, while bone-derived exosomal miRNAs (miR-486-5p) modulate muscle physiology. For each miRNA, we identified the target messenger RNAs (mRNAs) and signaling mechanisms. Importantly, exercise has emerged as a potent modulator of this crosstalk, altering exosomal miRNA profiles to promote anabolic outcomes in both tissues. This bidirectional communication contributes to osteosarcopenia pathophysiology, leading us to propose a novel “Exosomal miRNA Regulatory Network” for diagnosis and pathogenesis. Exosomal miRNAs show promise as early biomarkers for subclinical deterioration and therapeutic targets. However, methodological challenges in exosome isolation, incomplete characterization of miRNA networks, and aging complexity must be addressed before clinical implementation.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism