Sparse coarray manifold separation for efficient cellular localization using coprime array

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengheng Liu , Yonghe Shang , Wang Zheng , Peng Liu , Yongming Huang
{"title":"Sparse coarray manifold separation for efficient cellular localization using coprime array","authors":"Shengheng Liu ,&nbsp;Yonghe Shang ,&nbsp;Wang Zheng ,&nbsp;Peng Liu ,&nbsp;Yongming Huang","doi":"10.1016/j.sigpro.2025.110157","DOIUrl":null,"url":null,"abstract":"<div><div>Advances in radio access network and antenna array processing have spurred the recent wave of research and trials into cost-effective schemes for cellular-based localization. To facilitate high-precision and low-latency position-based services, we propose a sparse coarray manifold separation (SCMS) method for fast joint direction-of-arrival and time-of-arrival estimation using a coprime array. By leveraging the Vandermonde structure in the manifold separation model, the two-dimensional (2D) spatial spectrum can be transformed into a discrete Fourier form and computed using the 2D robust random slice-based sparse Fourier transform. Through extensive numerical evaluations and link-level tests, we demonstrate that the SCMS method offers a precise approximation of true locations and significantly reduces computational complexity compared to baseline methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"238 ","pages":"Article 110157"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425002713","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in radio access network and antenna array processing have spurred the recent wave of research and trials into cost-effective schemes for cellular-based localization. To facilitate high-precision and low-latency position-based services, we propose a sparse coarray manifold separation (SCMS) method for fast joint direction-of-arrival and time-of-arrival estimation using a coprime array. By leveraging the Vandermonde structure in the manifold separation model, the two-dimensional (2D) spatial spectrum can be transformed into a discrete Fourier form and computed using the 2D robust random slice-based sparse Fourier transform. Through extensive numerical evaluations and link-level tests, we demonstrate that the SCMS method offers a precise approximation of true locations and significantly reduces computational complexity compared to baseline methods.
稀疏共阵流形分离在元胞定位中的应用
无线接入网络和天线阵列处理技术的进步刺激了最近一波针对基于蜂窝定位的成本效益方案的研究和试验。为了方便高精度和低延迟的基于位置的服务,我们提出了一种稀疏阵列流形分离(SCMS)方法,用于使用协素阵列快速联合到达方向和到达时间估计。通过利用流形分离模型中的Vandermonde结构,二维空间频谱可以转换为离散傅里叶形式,并使用基于二维鲁棒随机切片的稀疏傅里叶变换进行计算。通过广泛的数值评估和链路水平测试,我们证明,与基线方法相比,SCMS方法提供了真实位置的精确近似,并显着降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信