Wavelet-based diffusion with spatial-frequency attention for hyperspectral anomaly detection

IF 7.6 Q1 REMOTE SENSING
Sitian Liu , Chunli Zhu , Lintao Peng , Xinyue Su , Lianjie Li , Guanghui Wen
{"title":"Wavelet-based diffusion with spatial-frequency attention for hyperspectral anomaly detection","authors":"Sitian Liu ,&nbsp;Chunli Zhu ,&nbsp;Lintao Peng ,&nbsp;Xinyue Su ,&nbsp;Lianjie Li ,&nbsp;Guanghui Wen","doi":"10.1016/j.jag.2025.104662","DOIUrl":null,"url":null,"abstract":"<div><div>Frequency decomposition offers a promising approach for hyperspectral anomaly detection (HAD) by separating anomalies from redundant backgrounds. However, an improper decomposition strategy may cause domain shifts in the low-frequency component (LFC) and excessive suppression of the high-frequency component (HFC), ultimately affecting detection performance. To address those challenges, we propose a novel frequency decomposition framework wavelet-enhanced diffusion framework for HAD, termed as WDHAD. Following a 2D discrete wavelet transformation, the LFC and HFC are processed in parallel: 1) The LFC is handled via a Low-Frequency Diffusion Model (LFDM), which employs a Low-Frequency Denoising Autoencoder (LFDAE) with spatial-frequency attention to recover key features and remove background noise. 2) The HFC is processed through a High-Frequency Enhancement Module (HFEM) that preserves edges and textures to improve anomaly detection. Both components are then fused and passed through a 2D inverse wavelet transformation, with the detection map obtained by a Reed-Xiaoli detector. In addition, a negative log-likelihood noise loss is introduced to model uncertainty. Extensive experiments on six public and two real-world UAV datasets demonstrate that WDHAD achieves robust generalization and cross-domain adaptability. The code will be publicly available at <span><span>https://github.com/CZhu0066/WDHAD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"142 ","pages":"Article 104662"},"PeriodicalIF":7.6000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225003097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency decomposition offers a promising approach for hyperspectral anomaly detection (HAD) by separating anomalies from redundant backgrounds. However, an improper decomposition strategy may cause domain shifts in the low-frequency component (LFC) and excessive suppression of the high-frequency component (HFC), ultimately affecting detection performance. To address those challenges, we propose a novel frequency decomposition framework wavelet-enhanced diffusion framework for HAD, termed as WDHAD. Following a 2D discrete wavelet transformation, the LFC and HFC are processed in parallel: 1) The LFC is handled via a Low-Frequency Diffusion Model (LFDM), which employs a Low-Frequency Denoising Autoencoder (LFDAE) with spatial-frequency attention to recover key features and remove background noise. 2) The HFC is processed through a High-Frequency Enhancement Module (HFEM) that preserves edges and textures to improve anomaly detection. Both components are then fused and passed through a 2D inverse wavelet transformation, with the detection map obtained by a Reed-Xiaoli detector. In addition, a negative log-likelihood noise loss is introduced to model uncertainty. Extensive experiments on six public and two real-world UAV datasets demonstrate that WDHAD achieves robust generalization and cross-domain adaptability. The code will be publicly available at https://github.com/CZhu0066/WDHAD.
基于空频关注的小波扩散高光谱异常检测
频率分解通过从冗余背景中分离异常,为高光谱异常检测提供了一种很有前途的方法。然而,不适当的分解策略可能会导致低频分量(LFC)的域移位和高频分量(HFC)的过度抑制,最终影响检测性能。为了解决这些挑战,我们提出了一种新的频率分解框架,小波增强扩散框架,称为WDHAD。在二维离散小波变换之后,LFC和HFC并行处理:1)LFC通过低频扩散模型(LFDM)处理,该模型采用具有空间-频率关注的低频去噪自编码器(LFDAE)来恢复关键特征并去除背景噪声。2)通过高频增强模块(HFEM)对HFC进行处理,保留边缘和纹理,提高异常检测。然后将两个分量融合并通过二维逆小波变换,得到Reed-Xiaoli检测器的检测图。此外,在模型不确定性中引入负对数似然噪声损失。在6个公开数据集和2个真实无人机数据集上的大量实验表明,WDHAD具有鲁棒泛化和跨域适应性。代码将在https://github.com/CZhu0066/WDHAD上公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信