Uniqueness of Landau–Lifschitz solution of the 2D steady Navier–Stokes equations in an infinitely long convergent channel

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Jiaqi Yang
{"title":"Uniqueness of Landau–Lifschitz solution of the 2D steady Navier–Stokes equations in an infinitely long convergent channel","authors":"Jiaqi Yang","doi":"10.1016/j.physd.2025.134802","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the uniqueness of the solution to the 2D steady Navier–Stokes equations in an infinitely long convergent channel. In Landau and Lifschitz’s book (Landau and Lifschitz, 1987), they obtained an exact solution. We call it the Landau–Lifschitz solution. A natural question is whether the Landau–Lifschitz solution is a unique solution. This paper tries to answer this question.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134802"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925002799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns the uniqueness of the solution to the 2D steady Navier–Stokes equations in an infinitely long convergent channel. In Landau and Lifschitz’s book (Landau and Lifschitz, 1987), they obtained an exact solution. We call it the Landau–Lifschitz solution. A natural question is whether the Landau–Lifschitz solution is a unique solution. This paper tries to answer this question.
无限长收敛通道中二维稳定Navier-Stokes方程Landau-Lifschitz解的唯一性
研究了无限长收敛通道中二维稳定Navier-Stokes方程解的唯一性。在Landau and Lifschitz的著作(Landau and Lifschitz, 1987)中,他们得到了一个精确解。我们称之为朗道-利夫希茨解。一个自然的问题是朗道-利夫希茨解是否是唯一解。本文试图回答这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信