{"title":"Bi, Cr and Ag dopants in PbTe and SnTe: Impact of the host band symmetry on doping properties by ab initio calculations","authors":"A. Łusakowski , P. Bogusławski , T. Story","doi":"10.1016/j.ssc.2025.116015","DOIUrl":null,"url":null,"abstract":"<div><div>Doping properties of Bi, Cr and Ag dopants in thermoelectric and topological materials PbTe and SnTe are analyzed based on density functional theory calculations in the local density approximations and the large supercell method. In agreement with experiment, in both PbTe and SnTe, Bi is a donor and Ag is an acceptor with a vanishing magnetic moment. In contrast, Cr is a resonant donor in PbTe, and an resonant acceptor in SnTe. We also consider the electronic structure of cation vacancies in PbTe and SnTe, since these abundant native defects induce <span><math><mi>p</mi></math></span>-type conductivity in both hosts. The quantitatively different impact of these dopants/defects on the host band structure of PbTe and SnTe (level energies, band splittings, band inversion, and a different level of hybridization between dopant and host states) is explained based on the group-theoretical arguments.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"404 ","pages":"Article 116015"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109825001905","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Doping properties of Bi, Cr and Ag dopants in thermoelectric and topological materials PbTe and SnTe are analyzed based on density functional theory calculations in the local density approximations and the large supercell method. In agreement with experiment, in both PbTe and SnTe, Bi is a donor and Ag is an acceptor with a vanishing magnetic moment. In contrast, Cr is a resonant donor in PbTe, and an resonant acceptor in SnTe. We also consider the electronic structure of cation vacancies in PbTe and SnTe, since these abundant native defects induce -type conductivity in both hosts. The quantitatively different impact of these dopants/defects on the host band structure of PbTe and SnTe (level energies, band splittings, band inversion, and a different level of hybridization between dopant and host states) is explained based on the group-theoretical arguments.
期刊介绍:
Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged.
A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions.
The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.