Sumaiya Nabi , Mohammad Amin Hajam , Umar Mushtaq , Aadil Manzoor Baba , Bashir Ahmad Malla , Firdous Ahmad Khanday , Nazir Ahmad Dar
{"title":"RhoA functionally collaborates with HSPA1A to promote the migratory phenotype of cancer cells","authors":"Sumaiya Nabi , Mohammad Amin Hajam , Umar Mushtaq , Aadil Manzoor Baba , Bashir Ahmad Malla , Firdous Ahmad Khanday , Nazir Ahmad Dar","doi":"10.1016/j.bbagrm.2025.195101","DOIUrl":null,"url":null,"abstract":"<div><div>RhoA, a member of the GTPase family, plays a pivotal role in attaining a migratory phenotype, mainly by regulating cytoskeleton dynamics, cell adhesion and membrane protrusions. Although many upstream regulators and downstream effectors of RhoA have been identified, the discovery of new interacting partners continues to expand its interactome, providing fresh insights into its regulation and function. Co-immunoprecipitation and fluorescence microscopy were used to study the interaction, localization and morphological effects of HSPA1A and RhoA. The interaction was validated by modulating the protein expression through transfections and silencing approaches. Cell proliferation, migration and viability were assessed using MTT, a Boyden chamber and FACS assays, respectively. Our study identified HSPA1A, as an unexplored interacting partner of RhoA under physiological conditions. Functional analyses showed that the interaction between HSPA1A and RhoA enhances the migratory potential of cancer cells, induces G0/G1 cell cycle arrest and promotes a rounded cell morphology. Under HSPA1A transfection, increased RhoA protein levels were observed, while the silencing of HSPA1A resulted in decreased RhoA levels. This study highlights the critical role of HSPA1A-RhoA interaction in regulating cancer cell migration, morphology and cell cycle progression. These findings lay the groundwork for future research into its potential clinical applications.</div></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1868 3","pages":"Article 195101"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939925000264","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RhoA, a member of the GTPase family, plays a pivotal role in attaining a migratory phenotype, mainly by regulating cytoskeleton dynamics, cell adhesion and membrane protrusions. Although many upstream regulators and downstream effectors of RhoA have been identified, the discovery of new interacting partners continues to expand its interactome, providing fresh insights into its regulation and function. Co-immunoprecipitation and fluorescence microscopy were used to study the interaction, localization and morphological effects of HSPA1A and RhoA. The interaction was validated by modulating the protein expression through transfections and silencing approaches. Cell proliferation, migration and viability were assessed using MTT, a Boyden chamber and FACS assays, respectively. Our study identified HSPA1A, as an unexplored interacting partner of RhoA under physiological conditions. Functional analyses showed that the interaction between HSPA1A and RhoA enhances the migratory potential of cancer cells, induces G0/G1 cell cycle arrest and promotes a rounded cell morphology. Under HSPA1A transfection, increased RhoA protein levels were observed, while the silencing of HSPA1A resulted in decreased RhoA levels. This study highlights the critical role of HSPA1A-RhoA interaction in regulating cancer cell migration, morphology and cell cycle progression. These findings lay the groundwork for future research into its potential clinical applications.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.