NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Daniel Jeremiah , Husnain Rafiq , Vinh Thong Ta , Muhammad Usman , Mohsin Raza , Muhammad Awais
{"title":"NIOM-DGA: Nature-inspired optimised ML-based model for DGA detection","authors":"Daniel Jeremiah ,&nbsp;Husnain Rafiq ,&nbsp;Vinh Thong Ta ,&nbsp;Muhammad Usman ,&nbsp;Mohsin Raza ,&nbsp;Muhammad Awais","doi":"10.1016/j.cose.2025.104561","DOIUrl":null,"url":null,"abstract":"<div><div>Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random domains daily for Command-and-Control (C&amp;C) communication, challenging traditional detection methods. This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms (NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly improves DGA detection compared to existing methods, advancing practical threat detection capabilities.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"157 ","pages":"Article 104561"},"PeriodicalIF":5.4000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825002500","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Domain Generation Algorithms (DGAs) allow malware to evade detection by generating millions of random domains daily for Command-and-Control (C&C) communication, challenging traditional detection methods. This work presents NIOM-DGA, a novel machine learning model that applies nature-inspired algorithms (NIAs) to select an optimal subset of 78 features from a dataset of over 16 million domain names, including several features not traditionally used in DGA detection. This approach enhances accuracy, robustness, and generalisability, achieving up to 98.3% accuracy—outperforming most existing approaches. Further testing on 10 external datasets with over 37 million domains confirms an average classification accuracy of 95.7%. Designed for seamless integration into SIEM, EDR, XDR, and cloud security platforms, NIOM-DGA significantly improves DGA detection compared to existing methods, advancing practical threat detection capabilities.
NIOM-DGA:基于ml的DGA检测模型
域生成算法(DGAs)允许恶意软件通过每天生成数百万个用于命令和控制(C&;C)通信的随机域来逃避检测,挑战传统的检测方法。这项工作提出了NIOM-DGA,这是一种新颖的机器学习模型,它应用自然启发算法(NIAs)从超过1600万个域名的数据集中选择78个特征的最佳子集,其中包括一些传统上未用于DGA检测的特征。这种方法提高了准确性、鲁棒性和通用性,达到了98.3%的准确率,优于大多数现有的方法。在超过3700万个域的10个外部数据集上的进一步测试证实了平均分类准确率为95.7%。NIOM-DGA专为无缝集成到SIEM、EDR、XDR和云安全平台而设计,与现有方法相比,NIOM-DGA显著改进了DGA检测,提高了实际威胁检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Security
Computers & Security 工程技术-计算机:信息系统
CiteScore
12.40
自引率
7.10%
发文量
365
审稿时长
10.7 months
期刊介绍: Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world. Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信