Hierarchical generalized extended parameter identification for multivariable equation-error ARMA-like systems by using the filtering identification idea

IF 10.7 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Feng Ding , Ling Xu , Xiao Zhang , Huan Xu , Yihong Zhou , Xiaoli Luan
{"title":"Hierarchical generalized extended parameter identification for multivariable equation-error ARMA-like systems by using the filtering identification idea","authors":"Feng Ding ,&nbsp;Ling Xu ,&nbsp;Xiao Zhang ,&nbsp;Huan Xu ,&nbsp;Yihong Zhou ,&nbsp;Xiaoli Luan","doi":"10.1016/j.arcontrol.2025.100993","DOIUrl":null,"url":null,"abstract":"<div><div>The filtering identification idea is an effective tool for handling the parameter identification of systems with colored noise. The hierarchical identification principle is an effective approach for addressing the identification of complex systems. For multivariable equation-error autoregressive moving-average-like (M-EEARMA-like) models with colored noise, which are also called multivariable controlled autoregressive autoregressive moving-average-like (M-CARARMA-like) models, this paper investigates and proposes the filtered hierarchical generalized extended stochastic gradient identification method, the filtered hierarchical multi-innovation generalized extended stochastic gradient identification method, the filtered hierarchical generalized extended recursive gradient identification method, the filtered hierarchical multi-innovation generalized extended recursive gradient identification method, the filtered hierarchical generalized extended least squares identification method, and the filtered hierarchical multi-innovation generalized extended least squares identification method by using the filtering identification idea and the hierarchical identification principle from available input–output data. These filtered hierarchical generalized extended identification methods can be extended to other linear and nonlinear multivariable stochastic systems with colored noise.</div></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"60 ","pages":"Article 100993"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578825000082","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The filtering identification idea is an effective tool for handling the parameter identification of systems with colored noise. The hierarchical identification principle is an effective approach for addressing the identification of complex systems. For multivariable equation-error autoregressive moving-average-like (M-EEARMA-like) models with colored noise, which are also called multivariable controlled autoregressive autoregressive moving-average-like (M-CARARMA-like) models, this paper investigates and proposes the filtered hierarchical generalized extended stochastic gradient identification method, the filtered hierarchical multi-innovation generalized extended stochastic gradient identification method, the filtered hierarchical generalized extended recursive gradient identification method, the filtered hierarchical multi-innovation generalized extended recursive gradient identification method, the filtered hierarchical generalized extended least squares identification method, and the filtered hierarchical multi-innovation generalized extended least squares identification method by using the filtering identification idea and the hierarchical identification principle from available input–output data. These filtered hierarchical generalized extended identification methods can be extended to other linear and nonlinear multivariable stochastic systems with colored noise.
基于滤波辨识思想的多变量方程误差类arma系统的层次广义扩展参数辨识
滤波辨识思想是处理有色噪声系统参数辨识的有效工具。层次辨识原理是解决复杂系统辨识问题的有效方法。针对带有色噪声的多变量方程误差自回归类移动平均(M-EEARMA-like)模型,又称多变量控制自回归类移动平均(M-CARARMA-like)模型,研究并提出了滤波分层广义扩展随机梯度辨识方法、滤波分层多创新广义扩展随机梯度辨识方法、滤波层次广义扩展递推梯度辨识方法、滤波层次多创新广义扩展递推梯度辨识方法、滤波层次广义扩展最小二乘辨识方法;利用滤波辨识思想和层次辨识原理,从可用的输入输出数据中得到滤波层次多创新广义扩展最小二乘辨识方法。这些滤波后的层次广义扩展辨识方法可以推广到其他具有有色噪声的线性和非线性多变量随机系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信