FGPointKAN++ point cloud segmentation and adaptive key cutting plane recognition for cow body size measurement

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Guoyuan Zhou , Wenhao Ye , Sheng Li , Jian Zhao , Zhiwen Wang , Guoliang Li , Jiawei Li
{"title":"FGPointKAN++ point cloud segmentation and adaptive key cutting plane recognition for cow body size measurement","authors":"Guoyuan Zhou ,&nbsp;Wenhao Ye ,&nbsp;Sheng Li ,&nbsp;Jian Zhao ,&nbsp;Zhiwen Wang ,&nbsp;Guoliang Li ,&nbsp;Jiawei Li","doi":"10.1016/j.aiia.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and efficient body size measurement is essential for health assessment and production management in modern animal husbandry. In order to realize the segmentation of the point clouds at the pixel-level and the accurate calculation of body size for the dairy cows in different postures, a segmentation model (FGPointKAN++) and an adaptive key cutting plane recognition (AKCPR) model are developed. FGPointKAN++ introduces FGE module and KAN that enhance local feature extraction and geometric consistency, significantly improving dairy cow part segmentation accuracy. The AKCPR utilizes adaptive plane fitting and dynamic orientation calibration to optimize the key body size measurement. The dairy cow body size parameters are then calculated based on the plane geometry features. The experimental results show that mIoU scores of 82.92 % and 83.24 % for the dairy cow pixel-level point cloud segmentation results. The calculated Mean Absolute Percentage Errors (MAPE) of Wither Height (WH), Body Width (BW), Chest Circumference (CC) and Abdominal Circumference (AC) are 2.07 %, 3.56 %, 2.24 % and 1.42 %, respectively. This method enables precise segmentation and automatic body size measurement of dairy cows in various walking postures, showing considerable potential for practical applications. It provides technical support for unmanned, intelligent, and precision farming, thereby enhancing animal welfare and improving economic efficiency.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 4","pages":"Pages 783-801"},"PeriodicalIF":8.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and efficient body size measurement is essential for health assessment and production management in modern animal husbandry. In order to realize the segmentation of the point clouds at the pixel-level and the accurate calculation of body size for the dairy cows in different postures, a segmentation model (FGPointKAN++) and an adaptive key cutting plane recognition (AKCPR) model are developed. FGPointKAN++ introduces FGE module and KAN that enhance local feature extraction and geometric consistency, significantly improving dairy cow part segmentation accuracy. The AKCPR utilizes adaptive plane fitting and dynamic orientation calibration to optimize the key body size measurement. The dairy cow body size parameters are then calculated based on the plane geometry features. The experimental results show that mIoU scores of 82.92 % and 83.24 % for the dairy cow pixel-level point cloud segmentation results. The calculated Mean Absolute Percentage Errors (MAPE) of Wither Height (WH), Body Width (BW), Chest Circumference (CC) and Abdominal Circumference (AC) are 2.07 %, 3.56 %, 2.24 % and 1.42 %, respectively. This method enables precise segmentation and automatic body size measurement of dairy cows in various walking postures, showing considerable potential for practical applications. It provides technical support for unmanned, intelligent, and precision farming, thereby enhancing animal welfare and improving economic efficiency.
fgpointkan++点云分割和自适应关键切割平面识别的奶牛体型测量
准确、高效的体尺测量是现代畜牧业健康评价和生产管理的基础。为了实现点云的像素级分割和奶牛不同姿态体型的精确计算,开发了fgpointkan++分割模型和自适应关键切割平面识别(AKCPR)模型。fgpointkan++引入FGE模块和KAN,增强局部特征提取和几何一致性,显著提高奶牛部位分割精度。AKCPR利用自适应平面拟合和动态方向校准来优化关键体尺寸测量。然后根据平面几何特征计算奶牛体型参数。实验结果表明,奶牛像素级点云分割的mIoU分数分别为82.92%和83.24%。臀高(WH)、体宽(BW)、胸围(CC)和腹围(AC)的平均绝对百分比误差(MAPE)分别为2.07%、3.56%、2.24%和1.42%。该方法可实现奶牛不同行走姿势的精确分割和体型自动测量,具有较大的实际应用潜力。为无人化、智能化、精准化农业提供技术支持,从而提高动物福利,提高经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信