Vid Kavaš , Philip Hinchliffe , Maša Zorman , Alen Krajnc , Matic Proj , Majda Golob , Martina Hrast Rambaher , James Spencer , Stanislav Gobec
{"title":"Repurposing of compound libraries yields new inhibitors of NDM-1 metallo-β-lactamase with diverse zinc-binding moieties","authors":"Vid Kavaš , Philip Hinchliffe , Maša Zorman , Alen Krajnc , Matic Proj , Majda Golob , Martina Hrast Rambaher , James Spencer , Stanislav Gobec","doi":"10.1016/j.ejmcr.2025.100282","DOIUrl":null,"url":null,"abstract":"<div><div>Antimicrobial resistance has emerged as a critical global public health threat, impacting human, animal and environmental health. An important mechanism of resistance is the production of β-lactamases, enzymes that hydrolyze the β-lactam ring, rendering β-lactam antibiotics ineffective. Metallo-β-lactamases (MBLs), which contain zinc ions in their active sites, are particularly challenging to counter as there are currently no inhibitors targeting these enzymes available on the market. Therefore, there is an urgent need for innovative drug discovery strategies to develop MBL-targeted therapies. New Delhi Metallo-β-Lactamase 1 (NDM-1) is the most widely disseminated MBL, with a global distribution in <em>Enterobacterales</em>. In this study, we used our library of fragment-sized chloroacetamides as a starting point to synthesize mercaptoacetamides as potential NDM-1 inhibitors. This resulted in a compound (<strong>14a</strong>) with an IC<sub>50</sub> of 20 μM, which crystallography shows binds to NDM-1 in two different poses. Using this structure as a starting point for <em>in silico</em> design, we developed a series of larger thiol-based compounds designed to occupy more space in the active site and to utilize other novel zinc-binding groups. Although some showed minimal inhibition (which makes them valuable as decoys for metalloenzyme studies) one compound exhibited an IC<sub>50</sub> of 14 μM, with crystallography indicating that an additional aromatic group, compared to <strong>14a</strong>, interacts with hydrophobic residues on an NDM-1 active site loop. These data identify promising scaffolds for the further development of potent MBL inhibitors and show the utility of repurposing chemical libraries to target clinically important enzymes.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"15 ","pages":"Article 100282"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277241742500038X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial resistance has emerged as a critical global public health threat, impacting human, animal and environmental health. An important mechanism of resistance is the production of β-lactamases, enzymes that hydrolyze the β-lactam ring, rendering β-lactam antibiotics ineffective. Metallo-β-lactamases (MBLs), which contain zinc ions in their active sites, are particularly challenging to counter as there are currently no inhibitors targeting these enzymes available on the market. Therefore, there is an urgent need for innovative drug discovery strategies to develop MBL-targeted therapies. New Delhi Metallo-β-Lactamase 1 (NDM-1) is the most widely disseminated MBL, with a global distribution in Enterobacterales. In this study, we used our library of fragment-sized chloroacetamides as a starting point to synthesize mercaptoacetamides as potential NDM-1 inhibitors. This resulted in a compound (14a) with an IC50 of 20 μM, which crystallography shows binds to NDM-1 in two different poses. Using this structure as a starting point for in silico design, we developed a series of larger thiol-based compounds designed to occupy more space in the active site and to utilize other novel zinc-binding groups. Although some showed minimal inhibition (which makes them valuable as decoys for metalloenzyme studies) one compound exhibited an IC50 of 14 μM, with crystallography indicating that an additional aromatic group, compared to 14a, interacts with hydrophobic residues on an NDM-1 active site loop. These data identify promising scaffolds for the further development of potent MBL inhibitors and show the utility of repurposing chemical libraries to target clinically important enzymes.