Fast data augmentation for battery degradation prediction

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weihan Li , Harshvardhan Samsukha , Bruis van Vlijmen , Lisen Yan , Samuel Greenbank , Simona Onori , Venkat Viswanathan
{"title":"Fast data augmentation for battery degradation prediction","authors":"Weihan Li ,&nbsp;Harshvardhan Samsukha ,&nbsp;Bruis van Vlijmen ,&nbsp;Lisen Yan ,&nbsp;Samuel Greenbank ,&nbsp;Simona Onori ,&nbsp;Venkat Viswanathan","doi":"10.1016/j.egyai.2025.100542","DOIUrl":null,"url":null,"abstract":"<div><div>Degradation prediction for lithium-ion batteries using data-driven methods requires high-quality aging data. However, generating such data, whether in the laboratory or the field, is time- and resource-intensive. Here, we propose a method for the synthetic generation of capacity fade curves based on limited battery tests or operation data without the need for invasive battery characterization, aiming to augment the datasets used by data-driven models for degradation prediction. We validate our method by evaluating the performance of both shallow and deep learning models using diverse datasets from laboratory and field applications. These datasets encompass various chemistries and realistic conditions, including cell-to-cell variations, measurement noise, varying charge-discharge conditions, and capacity recovery. Our results show that it is possible to reduce cell-testing efforts by at least 50 % by substituting synthetic data into an existing dataset. This paper highlights the effectiveness of our synthetic data augmentation method in supplementing existing methodologies in battery health prognostics while dramatically reducing the expenditure of time and resources on battery aging experiments.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100542"},"PeriodicalIF":9.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Degradation prediction for lithium-ion batteries using data-driven methods requires high-quality aging data. However, generating such data, whether in the laboratory or the field, is time- and resource-intensive. Here, we propose a method for the synthetic generation of capacity fade curves based on limited battery tests or operation data without the need for invasive battery characterization, aiming to augment the datasets used by data-driven models for degradation prediction. We validate our method by evaluating the performance of both shallow and deep learning models using diverse datasets from laboratory and field applications. These datasets encompass various chemistries and realistic conditions, including cell-to-cell variations, measurement noise, varying charge-discharge conditions, and capacity recovery. Our results show that it is possible to reduce cell-testing efforts by at least 50 % by substituting synthetic data into an existing dataset. This paper highlights the effectiveness of our synthetic data augmentation method in supplementing existing methodologies in battery health prognostics while dramatically reducing the expenditure of time and resources on battery aging experiments.

Abstract Image

电池退化预测的快速数据增强
使用数据驱动的方法进行锂离子电池的退化预测需要高质量的老化数据。然而,生成这样的数据,无论是在实验室还是在现场,都是时间和资源密集型的。在这里,我们提出了一种基于有限的电池测试或运行数据合成生成容量衰减曲线的方法,而不需要侵入性的电池表征,旨在增加数据驱动模型用于退化预测的数据集。我们通过使用来自实验室和现场应用的不同数据集评估浅层和深度学习模型的性能来验证我们的方法。这些数据集包含各种化学成分和现实条件,包括电池间的变化、测量噪声、不同的充放电条件和容量恢复。我们的研究结果表明,通过将合成数据替换为现有数据集,可以减少至少50%的细胞测试工作。本文强调了我们的综合数据增强方法在补充现有电池健康预测方法方面的有效性,同时大大减少了电池老化实验的时间和资源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信