High-Stability Electrocatalytic CO2 Reduction in Seawater Over Heterostructure Cu-Bi Nanosheets with H-Spillover Effect

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Bangli Feng, Yixin Ouyang, Peng Liu, Shanshan Zheng, Liwen Wang, Yifan Yang, Zisen Wang, Zhifeng Xin, Xiuyun Zhang, Yifa Chen
{"title":"High-Stability Electrocatalytic CO2 Reduction in Seawater Over Heterostructure Cu-Bi Nanosheets with H-Spillover Effect","authors":"Bangli Feng, Yixin Ouyang, Peng Liu, Shanshan Zheng, Liwen Wang, Yifan Yang, Zisen Wang, Zhifeng Xin, Xiuyun Zhang, Yifa Chen","doi":"10.1039/d5qi00999e","DOIUrl":null,"url":null,"abstract":"Direct electrocatalytic CO2 reduction in seawater to produce valuable products offers significant advantages for CO2 mitigation and minimizes the use of freshwater resources or electrolytes. Nevertheless, the complexity and high concentration of ions in seawater can lead to the corrosion of catalysts, posing challenges to their activity and stability. This study presents a kind of ultrathin heterostructure Cu-Bi nanosheets (Cu/BMO NSs) for CO2 electroreduction by embedding copper nanoparticles (Cu NPs) in Bi2MoO6 nanosheets (BMO NSs), which features abundant active sites, high chemical stability, strong H-spillover effect and favorable electron transfer during the electrocatalytic process, leading to superior CO2 reduction performance in seawater. Remarkably, in natural seawater, the faradaic efficiency for HCOOH (FEHCOOH) can remain above 90% (−1.0 V) over 50 h electrocatalysis. The achieved performance is superior to almost all of the electrocatalysts reported for electrocatalytic CO2 reduction in seawater. Theoretical calculations reveal that the introduction of Cu NPs could induce H-spillover effect in Cu/BMO NSs to facilitate the water dissociation process in reacting with CO2 to form the key intermediate *OCHO and subsequently hydrogenate to produce HCOOH. This work would promote the development of sustainable electrocatalytic technology in seawater.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"70 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00999e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Direct electrocatalytic CO2 reduction in seawater to produce valuable products offers significant advantages for CO2 mitigation and minimizes the use of freshwater resources or electrolytes. Nevertheless, the complexity and high concentration of ions in seawater can lead to the corrosion of catalysts, posing challenges to their activity and stability. This study presents a kind of ultrathin heterostructure Cu-Bi nanosheets (Cu/BMO NSs) for CO2 electroreduction by embedding copper nanoparticles (Cu NPs) in Bi2MoO6 nanosheets (BMO NSs), which features abundant active sites, high chemical stability, strong H-spillover effect and favorable electron transfer during the electrocatalytic process, leading to superior CO2 reduction performance in seawater. Remarkably, in natural seawater, the faradaic efficiency for HCOOH (FEHCOOH) can remain above 90% (−1.0 V) over 50 h electrocatalysis. The achieved performance is superior to almost all of the electrocatalysts reported for electrocatalytic CO2 reduction in seawater. Theoretical calculations reveal that the introduction of Cu NPs could induce H-spillover effect in Cu/BMO NSs to facilitate the water dissociation process in reacting with CO2 to form the key intermediate *OCHO and subsequently hydrogenate to produce HCOOH. This work would promote the development of sustainable electrocatalytic technology in seawater.
具有h溢出效应的异质结构Cu-Bi纳米片在海水上的高稳定性电催化CO2还原
在海水中直接电催化减少二氧化碳以生产有价值的产品,为减少二氧化碳排放提供了显著优势,并最大限度地减少了淡水资源或电解质的使用。然而,海水中离子的复杂性和高浓度会导致催化剂的腐蚀,给催化剂的活性和稳定性带来挑战。本研究提出了一种超薄异质结构Cu- bi纳米片(Cu/BMO NSs),通过在Bi2MoO6纳米片(BMO NSs)中嵌入铜纳米颗粒(Cu NPs)来电还原CO2,该纳米片具有活性位点丰富、化学稳定性高、h -溢出效应强、电催化过程中电子转移良好等特点,在海水中具有优异的CO2还原性能。值得注意的是,在自然海水中,电催化50 h后,HCOOH (FEHCOOH)的法拉第效率可保持在90%以上(−1.0 V)。所取得的性能优于几乎所有报道的电催化海水中二氧化碳还原的电催化剂。理论计算表明,Cu NPs的引入可以诱导Cu/BMO NSs中的h溢出效应,促进与CO2反应形成关键中间体*OCHO的水解离过程,并随后加氢生成HCOOH。这项工作将促进海水中可持续电催化技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信