spCLUE: a contrastive learning approach to unified spatial transcriptomics analysis across single-slice and multi-slice data

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiang Wang, Wei Vivian Li, Hongwei Li
{"title":"spCLUE: a contrastive learning approach to unified spatial transcriptomics analysis across single-slice and multi-slice data","authors":"Xiang Wang, Wei Vivian Li, Hongwei Li","doi":"10.1186/s13059-025-03636-0","DOIUrl":null,"url":null,"abstract":"Advances in spatial transcriptomics demand new tools to integrate data across tissue slices and identify consistent spatial domains. We introduce spCLUE, a comprehensive framework combining multi-view graph network, contrastive learning, attention mechanisms, and a batch prompting module to learn informative spot representations and integrate data from both aligned and unaligned samples. spCLUE outperforms nine single-slice and seven multi-slice methods when tested on diverse datasets and reveals biologically relevant domains across different tissues and conditions. spCLUE offers a powerful solution to spatial domain analysis and integration in spatial transcriptomics, enabling more accurate and interpretable studies of tissue organization.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03636-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in spatial transcriptomics demand new tools to integrate data across tissue slices and identify consistent spatial domains. We introduce spCLUE, a comprehensive framework combining multi-view graph network, contrastive learning, attention mechanisms, and a batch prompting module to learn informative spot representations and integrate data from both aligned and unaligned samples. spCLUE outperforms nine single-slice and seven multi-slice methods when tested on diverse datasets and reveals biologically relevant domains across different tissues and conditions. spCLUE offers a powerful solution to spatial domain analysis and integration in spatial transcriptomics, enabling more accurate and interpretable studies of tissue organization.
spCLUE:跨单层和多层数据统一空间转录组学分析的对比学习方法
空间转录组学的进步需要新的工具来整合跨组织切片的数据并识别一致的空间域。我们引入了spCLUE,这是一个结合多视图图网络、对比学习、注意机制和批量提示模块的综合框架,用于学习信息点表示并整合对齐和未对齐样本的数据。在不同的数据集上进行测试时,spCLUE的性能优于9种单切片方法和7种多切片方法,并揭示了不同组织和条件下的生物学相关结构域。spCLUE为空间转录组学的空间域分析和整合提供了强大的解决方案,使组织组织的研究更加准确和可解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信