{"title":"Extracellular vesicles: the “Trojan Horse” within breast cancer host microenvironments","authors":"Yue Kang, Ling’ao Meng, Shi Bai, Shenglong Li","doi":"10.1186/s12943-025-02358-y","DOIUrl":null,"url":null,"abstract":"Breast cancer represents a significant global health concern among women. The intricate processes and pathways underlying metastasis contribute to the challenging prognoses experienced by some patients. Extracellular vesicles (EVs) are membrane-bound structures characterized by phospholipid bilayers, capable of secretion by a multitude of cell types. The contents of these vesicles encompass a diverse assortment of lipids, proteins, nucleic acids, and cellular metabolites. The tumor microenvironment (TME) comprises a complex network involving tumor cells, non-cancerous cells, and an array of molecules they generate and release. Components include the extracellular matrix, cancer-associated fibroblasts, inflammatory immune cells, tumor-associated vasculature, and EVs discharged by these cellular entities. Within the TME, EVs serve as a mechanism akin to the “Trojan Horse,” exerting significant influence in tumor initiation, progression, metastasis, and responses to therapeutic interventions. EVs originating from tumor cells and associated entities within the TME bolster processes such as stimulating angiogenesis adjacent to tumor sites, establishing pre-metastatic niches in distant anatomical regions, and inducing transformative changes in cancer cells to acquire characteristics promoting invasion, angiogenesis, immune evasion, distant metastasis, and resistance to chemotherapy. Noteworthy is the unique capacity of EVs to traverse biological barriers due to their inherent biocompatibility, rendering them promising candidates for innovative drug delivery systems. This attribute presents an avenue to surmount the constraints of traditional cancer treatments. This scholarly inquiry delves into the pathogenic mechanisms of EVs in breast cancer and delves into prospective therapeutic interventions, offering a groundwork for forthcoming precision-guided therapies tailored to breast cancer.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"38 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02358-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer represents a significant global health concern among women. The intricate processes and pathways underlying metastasis contribute to the challenging prognoses experienced by some patients. Extracellular vesicles (EVs) are membrane-bound structures characterized by phospholipid bilayers, capable of secretion by a multitude of cell types. The contents of these vesicles encompass a diverse assortment of lipids, proteins, nucleic acids, and cellular metabolites. The tumor microenvironment (TME) comprises a complex network involving tumor cells, non-cancerous cells, and an array of molecules they generate and release. Components include the extracellular matrix, cancer-associated fibroblasts, inflammatory immune cells, tumor-associated vasculature, and EVs discharged by these cellular entities. Within the TME, EVs serve as a mechanism akin to the “Trojan Horse,” exerting significant influence in tumor initiation, progression, metastasis, and responses to therapeutic interventions. EVs originating from tumor cells and associated entities within the TME bolster processes such as stimulating angiogenesis adjacent to tumor sites, establishing pre-metastatic niches in distant anatomical regions, and inducing transformative changes in cancer cells to acquire characteristics promoting invasion, angiogenesis, immune evasion, distant metastasis, and resistance to chemotherapy. Noteworthy is the unique capacity of EVs to traverse biological barriers due to their inherent biocompatibility, rendering them promising candidates for innovative drug delivery systems. This attribute presents an avenue to surmount the constraints of traditional cancer treatments. This scholarly inquiry delves into the pathogenic mechanisms of EVs in breast cancer and delves into prospective therapeutic interventions, offering a groundwork for forthcoming precision-guided therapies tailored to breast cancer.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.