Franziska Wolff, Tiina H. M. Kolari, Aleksi Räsänen, Teemu Tahvanainen, Pasi Korpelainen, Miguel Villoslada, Mariana Verdonen, Eliisa Lotsari, Yuwen Pang, Timo Kumpula
{"title":"Interannual spectral consistency and spatial uncertainties in UAV‐based detection of boreal and subarctic mire plant communities","authors":"Franziska Wolff, Tiina H. M. Kolari, Aleksi Räsänen, Teemu Tahvanainen, Pasi Korpelainen, Miguel Villoslada, Mariana Verdonen, Eliisa Lotsari, Yuwen Pang, Timo Kumpula","doi":"10.1002/rse2.70017","DOIUrl":null,"url":null,"abstract":"Unoccupied Aerial Vehicle (UAV) imagery is widely used for detailed vegetation modeling and ecosystem monitoring in peatlands. Despite high‐resolution data, the spatial complexity and heterogeneity of vegetation, along with temporal fluctuations in spectral reflectance, complicate the assessment of spatial patterns in these ecosystems. We used interannual multispectral UAV data, collected at the same time of the year, from two aapa and two palsa mires in Finland. We applied Random Forest classification to map plant communities and assessed spectral, temporal and spatial consistency, class relationships and area estimates. Further, we used the class membership probabilities from the classification to derive a secondary classification map, representing the second most likely class label per‐pixel and an alternative map to account for spatial uncertainty in area estimates. The accuracies of the primary classifications varied between 66 and 85%. The best results were achieved using interannual data, improving accuracy by up to 14%‐points when compared to single‐year imagery, particularly benefiting classes with lower accuracies. Spectral and temporal inconsistencies in the UAV data collected in different years led to variations in the classifications, notably for the <jats:italic>Rubus chamaemorus</jats:italic> community in palsa mires, likely due to weather fluctuations and phenology. The transformations from primary to secondary classifications in areas of high uncertainty aligned well with the class relationships in the confusion matrix, supporting the model's reliability. Confidence interval‐based adjusted estimates aligned largely with unadjusted area estimates of the alternative map. Our findings support incorporating class membership probabilities and alternative maps to capture spatially explicit uncertainty, especially when spatial variability is high or key plant communities are involved. Our presented approach is particularly beneficial for upscaling ecological processes, such as carbon fluxes, where spatial variability is driven by plant community distribution and where informed decision‐making requires detailed spatial assessments.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"15 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70017","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Unoccupied Aerial Vehicle (UAV) imagery is widely used for detailed vegetation modeling and ecosystem monitoring in peatlands. Despite high‐resolution data, the spatial complexity and heterogeneity of vegetation, along with temporal fluctuations in spectral reflectance, complicate the assessment of spatial patterns in these ecosystems. We used interannual multispectral UAV data, collected at the same time of the year, from two aapa and two palsa mires in Finland. We applied Random Forest classification to map plant communities and assessed spectral, temporal and spatial consistency, class relationships and area estimates. Further, we used the class membership probabilities from the classification to derive a secondary classification map, representing the second most likely class label per‐pixel and an alternative map to account for spatial uncertainty in area estimates. The accuracies of the primary classifications varied between 66 and 85%. The best results were achieved using interannual data, improving accuracy by up to 14%‐points when compared to single‐year imagery, particularly benefiting classes with lower accuracies. Spectral and temporal inconsistencies in the UAV data collected in different years led to variations in the classifications, notably for the Rubus chamaemorus community in palsa mires, likely due to weather fluctuations and phenology. The transformations from primary to secondary classifications in areas of high uncertainty aligned well with the class relationships in the confusion matrix, supporting the model's reliability. Confidence interval‐based adjusted estimates aligned largely with unadjusted area estimates of the alternative map. Our findings support incorporating class membership probabilities and alternative maps to capture spatially explicit uncertainty, especially when spatial variability is high or key plant communities are involved. Our presented approach is particularly beneficial for upscaling ecological processes, such as carbon fluxes, where spatial variability is driven by plant community distribution and where informed decision‐making requires detailed spatial assessments.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.