[Omics Study of Ovarian Malignancies: From Urine Metabolomic Profile to Minimally Invasive MicroRNA Markers].

Q3 Medicine
D S Kutilin, O N Guskova, F E Filippov, A Yu Maksimov
{"title":"[Omics Study of Ovarian Malignancies: From Urine Metabolomic Profile to Minimally Invasive MicroRNA Markers].","authors":"D S Kutilin, O N Guskova, F E Filippov, A Yu Maksimov","doi":"10.31857/S0026898425010067, EDN: HDBYUG","DOIUrl":null,"url":null,"abstract":"<p><p>A search for efficient biomarkers of ovarian cancer is one of the current trends in gynecologic oncology. Metabolic profiling by ultra high-performance liquid chromatography and mass spectrometry (UHPLC-MS) yields information about the total set of low-molecular-weight metabolites of a patient's biological fluid sample. The metabolites may provide potential disease markers, and their combination with microRNA level data significantly increases the diagnostic value. To identify the potential noninvasive diagnostic markers of serous ovarian adenocarcinoma, the metabolomic profile and microRNA transcript levels were studied in urine samples of patients. The study included 60 patients diagnosed with serous ovarian adenocarcinoma and 20 women without a cancer history. Chromatographic separation of metabolites was performed on a Vanquish Flex UHPLC system coupled to an Orbitrap Exploris 480 mass spectrometer. A search for gene regulators of metabolites and microRNA regulators of genes was carried out using the Random forest machine learning method. The microRNA transcript levels in the urine were determined by real-time PCR (qPCR). LASSO-penalized logistic regression was used to build predictive models. In total, 26 compounds showed abnormal concentrations in the ovarian cancer (OC) patients compared with the control group, the set including kynurenine, phenylalanyl-valine, lysophosphatidylcholines (18:3, 18:2, 20:4, and 14:0), alanylleucine, L-phenylalanine, phosphatidylinositol (34:l), 5-methoxytryptophan, 2-hydroxymyristic acid, 3-oxocholic acid, indoleacrylic acid, lysophosphatidylserine (20:4), L-β-aspartyl-L-phenylalanine, myristic acid, decanoylcarnitine, aspartyl-glycine, malonylcarnitine, 3-hydroxybutyrylcarnitine, 3-methylxanthine, 2,6-dimethylheptanoylcarnitine, 3-oxododecanoic acid, N-acetylproline, L-octanoylcarnitine, and capryloylglycine. Metabolite-gene regulator (47 genes) and metabolite-microRNA regulator (613 unique microRNAs) relationships were established by the Random forest method. Levels of 85 microRNAs were validated by qPCR. Changes in transcript levels in the OC patients compared with the controls were observed for miR-382-5p, miR-593-3p, miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p, let-7b-5p, miR-27a-3p, miR-370-3p, miR-6529-5p, miR-653-5p, miR-4742-5p, miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p, miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p, miR-4668-3p, miR-3193, miR-23a-3p, miR-12132, miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p, miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p, miR-423-5p, miR-491-5p, miR-196b-5p, miR-6843-3p, miR-423-5p and miR-3184-5p. Thus, significant metabolomic imbalance in the urine was observed in the OC patients and was associated with changes in the levels of microRNAs that regulate the signaling pathways of the metabolites. The 26 compounds with abnormal concentrations and the levels of the microRNAs miR-33b-5p, miR-423-5p, miR-6843-3p, miR-4668-3p, miR-30c-5p, miR-6743-5p, miR-4742-5p, miR-1207-5p, and miR-17-5p in the urine were considered to be suitable as noninvasive diagnostic markers of OC.</p>","PeriodicalId":39818,"journal":{"name":"Molekulyarnaya Biologiya","volume":"59 1","pages":"80-116"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molekulyarnaya Biologiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0026898425010067, EDN: HDBYUG","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

A search for efficient biomarkers of ovarian cancer is one of the current trends in gynecologic oncology. Metabolic profiling by ultra high-performance liquid chromatography and mass spectrometry (UHPLC-MS) yields information about the total set of low-molecular-weight metabolites of a patient's biological fluid sample. The metabolites may provide potential disease markers, and their combination with microRNA level data significantly increases the diagnostic value. To identify the potential noninvasive diagnostic markers of serous ovarian adenocarcinoma, the metabolomic profile and microRNA transcript levels were studied in urine samples of patients. The study included 60 patients diagnosed with serous ovarian adenocarcinoma and 20 women without a cancer history. Chromatographic separation of metabolites was performed on a Vanquish Flex UHPLC system coupled to an Orbitrap Exploris 480 mass spectrometer. A search for gene regulators of metabolites and microRNA regulators of genes was carried out using the Random forest machine learning method. The microRNA transcript levels in the urine were determined by real-time PCR (qPCR). LASSO-penalized logistic regression was used to build predictive models. In total, 26 compounds showed abnormal concentrations in the ovarian cancer (OC) patients compared with the control group, the set including kynurenine, phenylalanyl-valine, lysophosphatidylcholines (18:3, 18:2, 20:4, and 14:0), alanylleucine, L-phenylalanine, phosphatidylinositol (34:l), 5-methoxytryptophan, 2-hydroxymyristic acid, 3-oxocholic acid, indoleacrylic acid, lysophosphatidylserine (20:4), L-β-aspartyl-L-phenylalanine, myristic acid, decanoylcarnitine, aspartyl-glycine, malonylcarnitine, 3-hydroxybutyrylcarnitine, 3-methylxanthine, 2,6-dimethylheptanoylcarnitine, 3-oxododecanoic acid, N-acetylproline, L-octanoylcarnitine, and capryloylglycine. Metabolite-gene regulator (47 genes) and metabolite-microRNA regulator (613 unique microRNAs) relationships were established by the Random forest method. Levels of 85 microRNAs were validated by qPCR. Changes in transcript levels in the OC patients compared with the controls were observed for miR-382-5p, miR-593-3p, miR-29a-5p, miR-2110, miR-30c-5p, miR-181a-5p, let-7b-5p, miR-27a-3p, miR-370-3p, miR-6529-5p, miR-653-5p, miR-4742-5p, miR-2467-3p, miR-1909-5p, miR-6743-5p, miR-875-3p, miR-19a-3p, miR-208a-5p, miR-330-5p, miR-1207-5p, miR-4668-3p, miR-3193, miR-23a-3p, miR-12132, miR-765, miR-181b-5p, miR-4529-3p, miR-33b-5p, miR-17-5p, miR-6866-3p, miR-4753-5p, miR-103a-3p, miR-423-5p, miR-491-5p, miR-196b-5p, miR-6843-3p, miR-423-5p and miR-3184-5p. Thus, significant metabolomic imbalance in the urine was observed in the OC patients and was associated with changes in the levels of microRNAs that regulate the signaling pathways of the metabolites. The 26 compounds with abnormal concentrations and the levels of the microRNAs miR-33b-5p, miR-423-5p, miR-6843-3p, miR-4668-3p, miR-30c-5p, miR-6743-5p, miR-4742-5p, miR-1207-5p, and miR-17-5p in the urine were considered to be suitable as noninvasive diagnostic markers of OC.

[卵巢恶性肿瘤组学研究:从尿液代谢组学特征到微创MicroRNA标志物]。
寻找卵巢癌的有效生物标志物是当前妇科肿瘤学的发展趋势之一。利用高效液相色谱和质谱(UHPLC-MS)进行代谢分析,可获得患者生物体液样本中低分子量代谢物的总体信息。代谢物可能提供潜在的疾病标志物,它们与microRNA水平数据的结合显著提高了诊断价值。为了确定浆液性卵巢腺癌的潜在无创诊断标志物,研究了患者尿液样本的代谢组学特征和microRNA转录水平。该研究包括60名诊断为浆液性卵巢腺癌的患者和20名没有癌症病史的女性。代谢物的色谱分离采用Vanquish Flex UHPLC系统与Orbitrap Exploris 480质谱联用。使用随机森林机器学习方法搜索代谢物的基因调控因子和基因的microRNA调控因子。采用实时荧光定量PCR (real-time PCR, qPCR)检测尿液中microRNA转录物水平。使用lasso惩罚逻辑回归建立预测模型。与对照组相比,卵巢癌(OC)患者体内共有26种化合物浓度异常,包括犬尿氨酸、苯丙酰缬氨酸、溶血磷脂酰胆碱(18:3、18:2、20:4和14:0)、丙氨酸亮氨酸、l-苯丙氨酸、磷脂酰肌醇(34:1)、5-甲氧基色氨酸、2-羟基肉豆蔻酸、3-氧胆酸、吲哚丙烯酸、溶血磷脂酰丝氨酸(20:4)、l- β-天冬氨酸- l-苯丙氨酸、肉豆蔻酸、癸酰肉碱、天冬氨酸甘氨酸、丙二酰肉碱、3-羟基丁基肉碱、3-甲基黄嘌呤、2,6-二甲基庚基肉碱、3-氧十二烷酸、n -乙酰脯氨酸、l -辛烷基肉碱和辛基甘氨酸。通过随机森林方法建立了代谢物-基因调控因子(47个基因)和代谢物- microrna调控因子(613个独特的microrna)之间的关系。通过qPCR验证85个microrna的水平。观察了OC患者中miR-382-5p、miR-593-3p、miR-29a-5p、miR-2110、miR-30c-5p、miR-181a-5p、let-7b-5p、miR-27a-3p、miR-370-3p、miR-6529-5p、miR-653-5p、miR-2467-3p、miR-19a-3p、miR-208a-5p、miR-330-5p、miR-1207-5p、miR-4668-3p、miR-12132、miR-765、miR-181b-5p、miR-4529-3p、miR-33b-5p、mir - 17866 -3p、miR-4753-5p、miR-103a-3p、miR-423-5p、miR-491-5p、miR-196b-5p、miR-6843-3p、miR-423-5p和miR-3184-5p。因此,在OC患者中观察到尿中明显的代谢组学失衡,并与调节代谢物信号通路的microrna水平的变化有关。尿液中26种microrna miR-33b-5p、miR-423-5p、miR-6843-3p、miR-4668-3p、miR-30c-5p、miR-6743-5p、miR-4742-5p、miR-1207-5p和miR-17-5p浓度和水平异常的化合物被认为适合作为OC的无创诊断标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molekulyarnaya Biologiya
Molekulyarnaya Biologiya Medicine-Medicine (all)
CiteScore
0.70
自引率
0.00%
发文量
131
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信