Wesley J Yon, Taekjip Ha, Yixian Zheng, Ross T A Pedersen
{"title":"A tubulin-binding protein that preferentially binds to GDP-tubulin and promotes GTP exchange.","authors":"Wesley J Yon, Taekjip Ha, Yixian Zheng, Ross T A Pedersen","doi":"10.1016/j.jbc.2025.110401","DOIUrl":null,"url":null,"abstract":"<p><p>α- and β-tubulin form GTPase heterodimers and assemble into microtubules. Like other GTPases, the tubulin heterodimer's nucleotide-bound state regulates its activity. In the dimer, α-tubulin is constitutively bound to GTP, while β-tubulin can bind to either GDP (GDP-tubulin) or GTP (GTP-tubulin). Following assembly into microtubules, GTP-tubulin hydrolyzes GTP to GDP, triggering microtubule disassembly. This generates free GDP-tubulin, which must exchange GDP for GTP to undergo assembly again. Tubulin dimers undergo rapid nucleotide exchange in vitro, leading to a commonly accepted belief that a tubulin guanine nucleotide exchange factor (GEF) may be unnecessary for microtubule assembly in cells. Here, we use quantitative binding assays to show that BuGZ, a spindle assembly factor, binds tightly to GDP-tubulin, less tightly to GTP-tubulin, and weakly to microtubules. We further show that BuGZ promotes the incorporation of GTP into tubulin using a nucleotide exchange assay. The discovery of a tubulin GEF suggests a mechanism that may aid rapid microtubule assembly dynamics in cells.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"110401"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302650/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.110401","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
α- and β-tubulin form GTPase heterodimers and assemble into microtubules. Like other GTPases, the tubulin heterodimer's nucleotide-bound state regulates its activity. In the dimer, α-tubulin is constitutively bound to GTP, while β-tubulin can bind to either GDP (GDP-tubulin) or GTP (GTP-tubulin). Following assembly into microtubules, GTP-tubulin hydrolyzes GTP to GDP, triggering microtubule disassembly. This generates free GDP-tubulin, which must exchange GDP for GTP to undergo assembly again. Tubulin dimers undergo rapid nucleotide exchange in vitro, leading to a commonly accepted belief that a tubulin guanine nucleotide exchange factor (GEF) may be unnecessary for microtubule assembly in cells. Here, we use quantitative binding assays to show that BuGZ, a spindle assembly factor, binds tightly to GDP-tubulin, less tightly to GTP-tubulin, and weakly to microtubules. We further show that BuGZ promotes the incorporation of GTP into tubulin using a nucleotide exchange assay. The discovery of a tubulin GEF suggests a mechanism that may aid rapid microtubule assembly dynamics in cells.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.