Sunghan Lee , Guangyao Zheng , Jeonghwan Koh , Haoran Li , Zicheng Xu , Sung Pil Cho , Sung Il Im , Vladimir Braverman , In cheol Jeong
{"title":"Optimizing beat-wise input for arrhythmia detection using 1-D convolutional neural networks: A real-world ECG study","authors":"Sunghan Lee , Guangyao Zheng , Jeonghwan Koh , Haoran Li , Zicheng Xu , Sung Pil Cho , Sung Il Im , Vladimir Braverman , In cheol Jeong","doi":"10.1016/j.cmpb.2025.108898","DOIUrl":null,"url":null,"abstract":"<div><h3>Backgrounds and objectives:</h3><div>Cardiac arrhythmias, characterized by irregular heartbeats, are difficult to diagnose in real-world scenarios. Machine learning has advanced arrhythmia detection; however, the optimal number of heartbeats for precise classification remains understudied. This study addresses this using machine learning while assessing the performance of arrhythmia detection across inter-patient and intra-patient conditions. Furthermore, the performance–resource trade-offs are evaluated for practical deployment in mobile health (mHealth) applications.</div></div><div><h3>Methods:</h3><div>Beat-wise segmentation and resampling techniques were utilized for preprocessing electrocardiography (ECG) signals to ensure consistent input lengths. A 1-D convolutional neural network was used to classify the eight multi-labeled arrhythmias. The dataset comprised real-world ECG recordings from the HiCardi wireless device alongside data from the MIT-BIH Arrhythmia database. Model performance was assessed through fivefold cross-validation under both inter-patient and intra-patient conditions.</div></div><div><h3>Results:</h3><div>The proposed model demonstrated peak accuracy at four beats under inter-patient conditions, with minimal improvements beyond this point. This configuration achieved a balance between performance (94.82% accuracy) and resource consumption (training time: 72.27 s per epoch; prediction time: 155 <span><math><mi>μ</mi></math></span>s per segment). Real-world simulations validated the feasibility of real-time arrhythmia detection for approximately 5000 patients.</div></div><div><h3>Conclusion:</h3><div>Utilizing four heartbeats as the input size for arrhythmia classification results in a trade-off between accuracy and computational efficiency. This discovery has significant implications for real-time wearable ECG devices, where both performance and resource constraints are crucial considerations. This insight is expected to serve as a valuable reference for enhancing the design and implementation of arrhythmia detection systems for scalable and efficient mHealth applications.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"269 ","pages":"Article 108898"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725003153","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Backgrounds and objectives:
Cardiac arrhythmias, characterized by irregular heartbeats, are difficult to diagnose in real-world scenarios. Machine learning has advanced arrhythmia detection; however, the optimal number of heartbeats for precise classification remains understudied. This study addresses this using machine learning while assessing the performance of arrhythmia detection across inter-patient and intra-patient conditions. Furthermore, the performance–resource trade-offs are evaluated for practical deployment in mobile health (mHealth) applications.
Methods:
Beat-wise segmentation and resampling techniques were utilized for preprocessing electrocardiography (ECG) signals to ensure consistent input lengths. A 1-D convolutional neural network was used to classify the eight multi-labeled arrhythmias. The dataset comprised real-world ECG recordings from the HiCardi wireless device alongside data from the MIT-BIH Arrhythmia database. Model performance was assessed through fivefold cross-validation under both inter-patient and intra-patient conditions.
Results:
The proposed model demonstrated peak accuracy at four beats under inter-patient conditions, with minimal improvements beyond this point. This configuration achieved a balance between performance (94.82% accuracy) and resource consumption (training time: 72.27 s per epoch; prediction time: 155 s per segment). Real-world simulations validated the feasibility of real-time arrhythmia detection for approximately 5000 patients.
Conclusion:
Utilizing four heartbeats as the input size for arrhythmia classification results in a trade-off between accuracy and computational efficiency. This discovery has significant implications for real-time wearable ECG devices, where both performance and resource constraints are crucial considerations. This insight is expected to serve as a valuable reference for enhancing the design and implementation of arrhythmia detection systems for scalable and efficient mHealth applications.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.