{"title":"‘Emerging cell-specific therapies in cardiovascular disease’","authors":"Amandeep Rashid Mondal , Ashish Misra","doi":"10.1016/j.vph.2025.107516","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide, driven by complex interactions among various plaque cell types, including endothelial cells, macrophages, and smooth muscle cells. Traditional therapies targeting systemic risk factors such as cholesterol and blood pressure fail to directly address the underlying mechanisms governing plaque formation and progression. Recent advances in cell-specific therapies offer new avenues for targeting the cellular and molecular processes driving atherosclerosis. This Review explores innovative strategies including nanoparticles, viral vectors and CRISPR-Cas9 technology, which have the potential to modulate gene expression and behaviour within plaques cells to alleviate disease. By focusing on the specific roles of key cell types in atherosclerosis, these emerging therapies promise to provide more precise, effective, and personalised treatment options without inducing off-target effects. Moreover, insights gained from successful applications of these technologies in oncology are considered for potential repurposing in atherosclerosis-related disease. As these cell-specific approaches advance through preclinical and clinical development, they may significantly enhance our ability to treat atherosclerosis at its cellular roots, offering new hope for reducing the burden of cardiovascular disease.</div></div>","PeriodicalId":23949,"journal":{"name":"Vascular pharmacology","volume":"160 ","pages":"Article 107516"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537189125000552","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Atherosclerosis is a leading cause of cardiovascular morbidity and mortality worldwide, driven by complex interactions among various plaque cell types, including endothelial cells, macrophages, and smooth muscle cells. Traditional therapies targeting systemic risk factors such as cholesterol and blood pressure fail to directly address the underlying mechanisms governing plaque formation and progression. Recent advances in cell-specific therapies offer new avenues for targeting the cellular and molecular processes driving atherosclerosis. This Review explores innovative strategies including nanoparticles, viral vectors and CRISPR-Cas9 technology, which have the potential to modulate gene expression and behaviour within plaques cells to alleviate disease. By focusing on the specific roles of key cell types in atherosclerosis, these emerging therapies promise to provide more precise, effective, and personalised treatment options without inducing off-target effects. Moreover, insights gained from successful applications of these technologies in oncology are considered for potential repurposing in atherosclerosis-related disease. As these cell-specific approaches advance through preclinical and clinical development, they may significantly enhance our ability to treat atherosclerosis at its cellular roots, offering new hope for reducing the burden of cardiovascular disease.
期刊介绍:
Vascular Pharmacology publishes papers, which contains results of all aspects of biology and pharmacology of the vascular system.
Papers are encouraged in basic, translational and clinical aspects of Vascular Biology and Pharmacology, utilizing approaches ranging from molecular biology to integrative physiology. All papers are in English.
The Journal publishes review articles which include vascular aspects of thrombosis, inflammation, cell signalling, atherosclerosis, and lipid metabolism.