The numerical solution of a Fredholm integral equation of the second kind using the Galerkin method based on optimal interpolation

IF 1.4 Q2 MATHEMATICS, APPLIED
Samandar Babaev , Abdullo Hayotov , Asliddin Boltaev , Surayyo Mirzoyeva , Malika Mirzaeva
{"title":"The numerical solution of a Fredholm integral equation of the second kind using the Galerkin method based on optimal interpolation","authors":"Samandar Babaev ,&nbsp;Abdullo Hayotov ,&nbsp;Asliddin Boltaev ,&nbsp;Surayyo Mirzoyeva ,&nbsp;Malika Mirzaeva","doi":"10.1016/j.rinam.2025.100607","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Galerkin method for obtaining approximate solutions to linear Fredholm integral equations of the second kind. The finite element solution is represented as a linear combination of basis functions, and the construction of suitable basis functions plays a crucial role in the accuracy of the approximation. We propose an optimal interpolation formula that exactly reproduces the functions <span><math><msup><mrow><mi>e</mi></mrow><mrow><mi>x</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>x</mi></mrow></msup></math></span>, and derive basis functions from its coefficients. This interpolation formula is constructed within the Hilbert space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>)</mo></mrow></mrow></msubsup></math></span>. To evaluate the effectiveness of the proposed approach, we solve several integral equations using the Galerkin method with two types of basis functions: the newly constructed exponential basis and classical piecewise linear basis functions. Numerical experiments are presented to compare the accuracy of these approaches. Graphs and tables illustrate the approximation errors, demonstrating that both basis functions achieve an error order of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow></mrow></math></span>, with the optimal interpolation-based basis yielding superior accuracy in certain cases.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100607"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Galerkin method for obtaining approximate solutions to linear Fredholm integral equations of the second kind. The finite element solution is represented as a linear combination of basis functions, and the construction of suitable basis functions plays a crucial role in the accuracy of the approximation. We propose an optimal interpolation formula that exactly reproduces the functions ex and ex, and derive basis functions from its coefficients. This interpolation formula is constructed within the Hilbert space W2(1,0). To evaluate the effectiveness of the proposed approach, we solve several integral equations using the Galerkin method with two types of basis functions: the newly constructed exponential basis and classical piecewise linear basis functions. Numerical experiments are presented to compare the accuracy of these approaches. Graphs and tables illustrate the approximation errors, demonstrating that both basis functions achieve an error order of O(h), with the optimal interpolation-based basis yielding superior accuracy in certain cases.
基于最优插值的伽辽金方法数值解第二类Fredholm积分方程
本文研究了求解第二类线性Fredholm积分方程近似解的Galerkin方法。有限元解被表示为基函数的线性组合,合适基函数的构造对逼近的精度起着至关重要的作用。我们提出了一个最优插值公式,精确地再现了函数ex和e - x,并从其系数推导出基函数。该插值公式在Hilbert空间W2(1,0)内构造。为了验证该方法的有效性,我们使用Galerkin方法求解了若干积分方程,并分别使用了两类基函数:新构造的指数基和经典的分段线性基函数。数值实验比较了这些方法的精度。图和表说明了近似误差,表明这两个基函数的误差阶为0 (h),在某些情况下,基于插值的最优基函数产生了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信