Efficient slice anomaly detection network for 3D brain MRI Volume.

PLOS digital health Pub Date : 2025-06-20 eCollection Date: 2025-06-01 DOI:10.1371/journal.pdig.0000874
Zeduo Zhang, Yalda Mohsenzadeh
{"title":"Efficient slice anomaly detection network for 3D brain MRI Volume.","authors":"Zeduo Zhang, Yalda Mohsenzadeh","doi":"10.1371/journal.pdig.0000874","DOIUrl":null,"url":null,"abstract":"<p><p>Current anomaly detection methods excel with benchmark industrial data but struggle with natural images and medical data due to varying definitions of 'normal' and 'abnormal.' This makes accurate identification of deviations in these fields particularly challenging. Especially for 3D brain MRI data, all the state-of-the-art models are reconstruction-based with 3D convolutional neural networks which are memory-intensive, time-consuming and producing noisy outputs that require further post-processing. We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost. We aggregate the extracted features to perform anomaly detection tasks on 3D brain MRI volumes. Our model integrates a conditional normalizing flow to calculate log likelihood of features and employs the contrastive loss to enhance anomaly detection accuracy. The results indicate improved performance, showcasing our model's remarkable adaptability and effectiveness when addressing the challenges exists in brain MRI data. In addition, for the large-scale 3D brain volumes, our model SimpleSliceNet outperforms the state-of-the-art 2D and 3D models in terms of accuracy, memory usage and time consumption. Code is available at: https://github.com/Jarvisarmy/SimpleSliceNet.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 6","pages":"e0000874"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12180662/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current anomaly detection methods excel with benchmark industrial data but struggle with natural images and medical data due to varying definitions of 'normal' and 'abnormal.' This makes accurate identification of deviations in these fields particularly challenging. Especially for 3D brain MRI data, all the state-of-the-art models are reconstruction-based with 3D convolutional neural networks which are memory-intensive, time-consuming and producing noisy outputs that require further post-processing. We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost. We aggregate the extracted features to perform anomaly detection tasks on 3D brain MRI volumes. Our model integrates a conditional normalizing flow to calculate log likelihood of features and employs the contrastive loss to enhance anomaly detection accuracy. The results indicate improved performance, showcasing our model's remarkable adaptability and effectiveness when addressing the challenges exists in brain MRI data. In addition, for the large-scale 3D brain volumes, our model SimpleSliceNet outperforms the state-of-the-art 2D and 3D models in terms of accuracy, memory usage and time consumption. Code is available at: https://github.com/Jarvisarmy/SimpleSliceNet.

三维脑MRI体积的高效切片异常检测网络。
目前的异常检测方法在处理基准工业数据时表现出色,但在处理自然图像和医疗数据时却表现不佳,因为“正常”和“异常”的定义不同。这使得准确识别这些领域的偏差尤其具有挑战性。特别是对于3D脑MRI数据,所有最先进的模型都是基于三维卷积神经网络的重建,这是内存密集型的,耗时且产生噪声的输出,需要进一步的后处理。我们提出了一个称为简单切片网络(SimpleSliceNet)的框架,它利用在ImageNet上预训练的模型,并在单独的MRI数据集上进行微调,作为二维切片特征提取器,以降低计算成本。我们将提取的特征聚合起来,在三维脑MRI体积上执行异常检测任务。我们的模型集成了一个条件归一化流程来计算特征的对数似然,并采用对比损失来提高异常检测的准确性。结果表明,我们的模型在解决脑MRI数据中存在的挑战时具有显著的适应性和有效性。此外,对于大规模的3D脑体积,我们的模型SimpleSliceNet在精度、内存使用和时间消耗方面优于最先进的2D和3D模型。代码可从https://github.com/Jarvisarmy/SimpleSliceNet获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信