Faster computation of left-bounded shortest unique substrings.

IF 1.5 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Larissa L M Aguiar, Felipe A Louza
{"title":"Faster computation of left-bounded shortest unique substrings.","authors":"Larissa L M Aguiar, Felipe A Louza","doi":"10.1186/s13015-025-00287-5","DOIUrl":null,"url":null,"abstract":"<p><p>Finding shortest unique substrings (SUS) is a fundamental problem in string processing with applications in bioinformatics. In this paper, we present an algorithm for solving a variant of the SUS problem, the left-bounded shortest unique substrings (LSUS). This variant is particularly important in applications such as PCR primer design. Our algorithm runs in O(n) time using 2n memory words plus n bytes for an input string of length n. Experimental results with real and artificial datasets show that our algorithm is the fastest alternative in practice, being two times faster (on the average) than related works, while using a similar peak memory footprint.</p>","PeriodicalId":50823,"journal":{"name":"Algorithms for Molecular Biology","volume":"20 1","pages":"11"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms for Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13015-025-00287-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Finding shortest unique substrings (SUS) is a fundamental problem in string processing with applications in bioinformatics. In this paper, we present an algorithm for solving a variant of the SUS problem, the left-bounded shortest unique substrings (LSUS). This variant is particularly important in applications such as PCR primer design. Our algorithm runs in O(n) time using 2n memory words plus n bytes for an input string of length n. Experimental results with real and artificial datasets show that our algorithm is the fastest alternative in practice, being two times faster (on the average) than related works, while using a similar peak memory footprint.

更快的计算左有界最短唯一子串。
寻找最短唯一子串(SUS)是生物信息学中字符串处理的一个基本问题。本文提出了一种求解SUS问题的变体——左有界最短唯一子串(LSUS)的算法。这种变体在PCR引物设计等应用中尤为重要。对于长度为n的输入字符串,我们的算法使用2n个存储字加上n个字节,在O(n)时间内运行。真实和人工数据集的实验结果表明,我们的算法在实践中是最快的替代方案,在使用相似的峰值内存占用时,(平均)比相关工作快两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms for Molecular Biology
Algorithms for Molecular Biology 生物-生化研究方法
CiteScore
2.40
自引率
10.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Algorithms for Molecular Biology publishes articles on novel algorithms for biological sequence and structure analysis, phylogeny reconstruction, and combinatorial algorithms and machine learning. Areas of interest include but are not limited to: algorithms for RNA and protein structure analysis, gene prediction and genome analysis, comparative sequence analysis and alignment, phylogeny, gene expression, machine learning, and combinatorial algorithms. Where appropriate, manuscripts should describe applications to real-world data. However, pure algorithm papers are also welcome if future applications to biological data are to be expected, or if they address complexity or approximation issues of novel computational problems in molecular biology. Articles about novel software tools will be considered for publication if they contain some algorithmically interesting aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信