Sidelobe Suppression of Squinted SAR Complex Data Based on Minimum Image Sharpness

Yanfang Liu;Wei Yang;Hongcheng Zeng;Haijun Shen;Yamin Wang;Xiaojie Zhou;Chunsheng Li
{"title":"Sidelobe Suppression of Squinted SAR Complex Data Based on Minimum Image Sharpness","authors":"Yanfang Liu;Wei Yang;Hongcheng Zeng;Haijun Shen;Yamin Wang;Xiaojie Zhou;Chunsheng Li","doi":"10.1109/LGRS.2025.3560202","DOIUrl":null,"url":null,"abstract":"Sidelobe suppression is of particular importance in the synthetic aperture radar (SAR) image quality improvement. However, the range and azimuth sidelobes are coupled and non-orthogonal in squinted SAR images, which makes traditional methods ineffective. This letter presents a sidelobe suppression method for squinted SAR complex data based on the SAR convolution model and minimum image sharpness. First, the convolution model of SAR images is revised with the subpixel offset. Then, the sidelobe suppression is achieved by deconvolution pixel by pixel. Innovatively, a convex optimization based on minimum image sharpness is built and solved to estimate the unknown and variant subpixel offset of each target. In addition, a new factor based on integrated sidelobe ratio (ISLR) is applied for efficiency improvement. Finally, results on the squinted spaceborne SAR real data verify the effectiveness of the proposed method both in sidelobe suppression and the maintenance of amplitude-phase characteristics. The codes are available in <uri>https://github.com/Keyserliu/Sidelobe-Suppression</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963714/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sidelobe suppression is of particular importance in the synthetic aperture radar (SAR) image quality improvement. However, the range and azimuth sidelobes are coupled and non-orthogonal in squinted SAR images, which makes traditional methods ineffective. This letter presents a sidelobe suppression method for squinted SAR complex data based on the SAR convolution model and minimum image sharpness. First, the convolution model of SAR images is revised with the subpixel offset. Then, the sidelobe suppression is achieved by deconvolution pixel by pixel. Innovatively, a convex optimization based on minimum image sharpness is built and solved to estimate the unknown and variant subpixel offset of each target. In addition, a new factor based on integrated sidelobe ratio (ISLR) is applied for efficiency improvement. Finally, results on the squinted spaceborne SAR real data verify the effectiveness of the proposed method both in sidelobe suppression and the maintenance of amplitude-phase characteristics. The codes are available in https://github.com/Keyserliu/Sidelobe-Suppression
基于最小图像清晰度的斜视SAR复杂数据旁瓣抑制
副瓣抑制在提高合成孔径雷达(SAR)图像质量中具有重要意义。然而,在斜视SAR图像中,距离副瓣和方位角副瓣是耦合且非正交的,使得传统的方法效果不佳。本文提出了一种基于SAR卷积模型和最小图像清晰度的斜视SAR复合数据旁瓣抑制方法。首先,利用亚像素偏移量对SAR图像的卷积模型进行修正。然后,通过逐像素反卷积实现副瓣抑制。创新地,建立并解决了基于最小图像清晰度的凸优化,以估计每个目标的未知和可变亚像素偏移。此外,为了提高效率,还引入了一种基于综合旁瓣比(ISLR)的新因子。最后,在斜视星载SAR实际数据上验证了该方法在抑制副瓣和保持幅相特性方面的有效性。代码可在https://github.com/Keyserliu/Sidelobe-Suppression上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信