Zhou Yi , Yun-Lei Xu , Jia Hu , Da-Dong Wen , Yong-He Deng , Yun Xie , Shuang-Xiang Qi , Shuang He , Ping Peng
{"title":"Suzuki segregation of alloying elements at stacking faults in Ag-based alloys","authors":"Zhou Yi , Yun-Lei Xu , Jia Hu , Da-Dong Wen , Yong-He Deng , Yun Xie , Shuang-Xiang Qi , Shuang He , Ping Peng","doi":"10.1016/j.cocom.2025.e01082","DOIUrl":null,"url":null,"abstract":"<div><div>First-principles calculations were used in systematically investigating the intrinsic stacking fault energy (<span><math><mrow><msub><mi>γ</mi><mtext>isf</mtext></msub></mrow></math></span>) of alloying elements X (X = In, Sn, Zn, Zr, Cu, Ni, Ir, Cr, and W) doped in different atomic layers of Ag supercell and the shear strength of Ag supercell along the <span><math><mrow><mrow><mo>[</mo><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow></mrow></math></span> slip system after doping with alloy atom. Computational results demonstrate that compared to the <span><math><mrow><msub><mi>γ</mi><mtext>isf</mtext></msub></mrow></math></span> of pure Ag crystals, doping atoms Zn, In, and Sn on the slip plane reduces the value of <span><math><mrow><msub><mi>γ</mi><mtext>isf</mtext></msub></mrow></math></span> by approximately 10 %, 50 %, and 70 %, respectively, resulting in the Suzuki effect. Moreover, the addition of W, Ir, and Cr can increase the unstable stacking fault energy (<span><math><mrow><msub><mi>γ</mi><mtext>usf</mtext></msub></mrow></math></span>) and ideal shear strength (<span><math><mrow><msub><mi>σ</mi><mi>max</mi></msub></mrow></math></span>) of the Ag supercell in the <span><math><mrow><mrow><mo>[</mo><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow></mrow></math></span> slip system, increasing the nucleation energy barrier of <span><math><mrow><mn>1</mn><mo>/</mo><mn>6</mn><mrow><mo>[</mo><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow></mrow></math></span> Shockley partial dislocation and enhancing the yield strength of Ag crystals. The <span><math><mrow><msub><mi>γ</mi><mtext>usf</mtext></msub></mrow></math></span> and <span><math><mrow><msub><mi>σ</mi><mi>max</mi></msub></mrow></math></span> values of the Ag supercell in the <span><math><mrow><mrow><mo>[</mo><mrow><mn>11</mn><mover><mn>2</mn><mo>‾</mo></mover></mrow><mo>]</mo></mrow><mrow><mo>(</mo><mn>111</mn><mo>)</mo></mrow></mrow></math></span> slip system increase with the formation enthalpy of point defects (<em>H</em>), indicating that with the increase of <em>H</em>, dislocation motion is impeded and the creep resistance of the Ag crystals is enhanced.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"44 ","pages":"Article e01082"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325000814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
First-principles calculations were used in systematically investigating the intrinsic stacking fault energy () of alloying elements X (X = In, Sn, Zn, Zr, Cu, Ni, Ir, Cr, and W) doped in different atomic layers of Ag supercell and the shear strength of Ag supercell along the slip system after doping with alloy atom. Computational results demonstrate that compared to the of pure Ag crystals, doping atoms Zn, In, and Sn on the slip plane reduces the value of by approximately 10 %, 50 %, and 70 %, respectively, resulting in the Suzuki effect. Moreover, the addition of W, Ir, and Cr can increase the unstable stacking fault energy () and ideal shear strength () of the Ag supercell in the slip system, increasing the nucleation energy barrier of Shockley partial dislocation and enhancing the yield strength of Ag crystals. The and values of the Ag supercell in the slip system increase with the formation enthalpy of point defects (H), indicating that with the increase of H, dislocation motion is impeded and the creep resistance of the Ag crystals is enhanced.