Aurelien Genot , Stéphane Boulal , Jean-Michel Klein , Axel Vincent-Randonnier , Arnaud Mura
{"title":"One-dimensional flame subject to periodic and sinusoidal motion: frequency domain analysis and flame-motion contribution to combustion instability","authors":"Aurelien Genot , Stéphane Boulal , Jean-Michel Klein , Axel Vincent-Randonnier , Arnaud Mura","doi":"10.1016/j.combustflame.2025.114285","DOIUrl":null,"url":null,"abstract":"<div><div>Combustion instabilities are often an outcome of the interaction between fluctuations in the flame-induced heat release rate (HRR) and acoustic modes of the combustor. Thus, they are a direct consequence of the flame unsteady dynamics, which itself features multiple contributions. The present study is focused on one of them, namely that of the flame motion. Two distinct spatial distributions of the HRR subject to a periodic and sinusoidal motion (slower than the speed of sound) are analyzed in terms of its normalized motion amplitude. For these two distributions, a frequency domain analysis is conducted and the presence of peaks at the motion frequency, together with higher harmonics, are put into evidence. Thus, it is established that, even in (i) a simplified one-dimensional situation and (ii) with a slow periodic and sinusoidal motion featuring moderate amplitudes, flame motions can drive an energy transfer from the fundamental frequency to upper harmonics. This serves as a basis for the development of a simplified model, which is found able to retrieve the corresponding response in terms of its fundamental and harmonic frequencies. Flame-flow couplings are subsequently analyzed on the basis of stability criteria based on the Rayleigh index, the Chu index and a nonlinear index. This leads to the identification of a threshold value of the normalized motion amplitude with the flame motion contribution acting either as a source term below this value or as a damping term once it is exceeded.</div><div><strong>Novelty and significance</strong></div><div>This manuscript is focused on the flame motion contribution to flame dynamics and brings some new insights to the current state of the art: (i) for a periodic and sinusoidal motion, the flame response displays several harmonics that are triggered regardless of the motion amplitude and HRR distribution, (ii) a nonlinear and multi-harmonic model of the HRR fluctuations is presented for a boxcar HRR distribution moving periodically, and (iii) a threshold amplitude of the order of twenty times the flame thickness defines the flame motion contribution to combustion instabilities.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"279 ","pages":"Article 114285"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025003232","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Combustion instabilities are often an outcome of the interaction between fluctuations in the flame-induced heat release rate (HRR) and acoustic modes of the combustor. Thus, they are a direct consequence of the flame unsteady dynamics, which itself features multiple contributions. The present study is focused on one of them, namely that of the flame motion. Two distinct spatial distributions of the HRR subject to a periodic and sinusoidal motion (slower than the speed of sound) are analyzed in terms of its normalized motion amplitude. For these two distributions, a frequency domain analysis is conducted and the presence of peaks at the motion frequency, together with higher harmonics, are put into evidence. Thus, it is established that, even in (i) a simplified one-dimensional situation and (ii) with a slow periodic and sinusoidal motion featuring moderate amplitudes, flame motions can drive an energy transfer from the fundamental frequency to upper harmonics. This serves as a basis for the development of a simplified model, which is found able to retrieve the corresponding response in terms of its fundamental and harmonic frequencies. Flame-flow couplings are subsequently analyzed on the basis of stability criteria based on the Rayleigh index, the Chu index and a nonlinear index. This leads to the identification of a threshold value of the normalized motion amplitude with the flame motion contribution acting either as a source term below this value or as a damping term once it is exceeded.
Novelty and significance
This manuscript is focused on the flame motion contribution to flame dynamics and brings some new insights to the current state of the art: (i) for a periodic and sinusoidal motion, the flame response displays several harmonics that are triggered regardless of the motion amplitude and HRR distribution, (ii) a nonlinear and multi-harmonic model of the HRR fluctuations is presented for a boxcar HRR distribution moving periodically, and (iii) a threshold amplitude of the order of twenty times the flame thickness defines the flame motion contribution to combustion instabilities.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.