Yuhui Song , Chenchu Xu , Boyan Wang , Xiuquan Du , Jie Chen , Yanping Zhang , Shuo Li
{"title":"Interactive prototype learning and self-learning for few-shot medical image segmentation","authors":"Yuhui Song , Chenchu Xu , Boyan Wang , Xiuquan Du , Jie Chen , Yanping Zhang , Shuo Li","doi":"10.1016/j.artmed.2025.103183","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot learning alleviates the heavy dependence of medical image segmentation on large-scale labeled data, but it shows strong performance gaps when dealing with new tasks compared with traditional deep learning. Existing methods mainly learn the class knowledge of a few known (support) samples and extend it to unknown (query) samples. However, the large distribution differences between the support image and the query image lead to serious deviations in the transfer of class knowledge, which can be specifically summarized as two segmentation challenges: Intra-class inconsistency and Inter-class similarity, blurred and confused boundaries. In this paper, we propose a new interactive prototype learning and self-learning network to solve the above challenges. First, we propose a deep encoding-decoding module to learn the high-level features of the support and query images to build peak prototypes with the greatest semantic information and provide semantic guidance for segmentation. Then, we propose an interactive prototype learning module to improve intra-class feature consistency and reduce inter-class feature similarity by conducting mid-level features-based mean prototype interaction and high-level features-based peak prototype interaction. Last, we propose a query features-guided self-learning module to separate foreground and background at the feature level and combine low-level feature maps to complement boundary information. Our model achieves competitive segmentation performance on benchmark datasets and shows substantial improvement in generalization ability.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"167 ","pages":"Article 103183"},"PeriodicalIF":6.2000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725001186","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Few-shot learning alleviates the heavy dependence of medical image segmentation on large-scale labeled data, but it shows strong performance gaps when dealing with new tasks compared with traditional deep learning. Existing methods mainly learn the class knowledge of a few known (support) samples and extend it to unknown (query) samples. However, the large distribution differences between the support image and the query image lead to serious deviations in the transfer of class knowledge, which can be specifically summarized as two segmentation challenges: Intra-class inconsistency and Inter-class similarity, blurred and confused boundaries. In this paper, we propose a new interactive prototype learning and self-learning network to solve the above challenges. First, we propose a deep encoding-decoding module to learn the high-level features of the support and query images to build peak prototypes with the greatest semantic information and provide semantic guidance for segmentation. Then, we propose an interactive prototype learning module to improve intra-class feature consistency and reduce inter-class feature similarity by conducting mid-level features-based mean prototype interaction and high-level features-based peak prototype interaction. Last, we propose a query features-guided self-learning module to separate foreground and background at the feature level and combine low-level feature maps to complement boundary information. Our model achieves competitive segmentation performance on benchmark datasets and shows substantial improvement in generalization ability.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.