1956-LB: Artificial Intelligence vs. Human Coaching for Diabetes Prevention—Results from a 12-Month, Multicenter, Pragmatic Randomized Controlled Trial
NESTORAS N. MATHIOUDAKIS, MOHAMMED S. ABUSAMAAN, MARY E. ALDERFER, DEFNE ALVER, ADRIAN S. DOBS, BRIAN KANE, BENJAMIN LALANI, JOHN MCGREADY, KRISTIN RIEKERT, BENJAMIN RINGHAM, FATMATA VANDI, AMAL A. WANIGATUNGA, DANIEL ZADE, NISA M. MARUTHUR
{"title":"1956-LB: Artificial Intelligence vs. Human Coaching for Diabetes Prevention—Results from a 12-Month, Multicenter, Pragmatic Randomized Controlled Trial","authors":"NESTORAS N. MATHIOUDAKIS, MOHAMMED S. ABUSAMAAN, MARY E. ALDERFER, DEFNE ALVER, ADRIAN S. DOBS, BRIAN KANE, BENJAMIN LALANI, JOHN MCGREADY, KRISTIN RIEKERT, BENJAMIN RINGHAM, FATMATA VANDI, AMAL A. WANIGATUNGA, DANIEL ZADE, NISA M. MARUTHUR","doi":"10.2337/db25-1956-lb","DOIUrl":null,"url":null,"abstract":"Introduction and Objective: Prediabetes is highly prevalent, yet few patients receive evidence-based behavioral lifestyle support. Artificial intelligence (AI) may offer a scalable approach to diabetes prevention. This study evaluated whether a fully automated AI-based diabetes prevention program (ai-DPP), consisting of a mobile app and digital body weight scale, is non-inferior to a traditional human coach-based DPP (h-DPP) in adults with prediabetes and overweight or obesity. Methods: We conducted a two-site, pragmatic, RCT involving adults with prediabetes and overweight or obesity (NCT05056376). Participants were randomly assigned (1:1) to either an ai-DPP (Sweetch Health, Ltd) or a CDC-recognized h-DPP for a 12-month intervention. Physical activity was objectively measured using actigraphy. The primary endpoint, assessed at 12 months, was the CDC-defined composite diabetes risk reduction outcome, including achieving 5% weight loss, 4% weight loss plus 150 minutes of weekly physical activity, or a 0.2 reduction in A1C. The pre-specified non-inferiority margin was 15 percentage points. The primary outcome was analyzed using a modified intention-to-treat (mITT) approach, including participants with available 12-month data who did not use prohibited medications. Results: Of 427 screened, 368 were enrolled (183 ai-DPP, 185 h-DPP). Trial completion (85.1%) and prohibited medication use (3.5%) were similar between arms, leaving 300 (151 ai-DPP, 149 h-DPP) in the mITT analysis. Achievement of the primary outcome was similar between groups (ai-DPP: 35.8%, h-DPP: 35.6%; p = 0.97). The age - and sex-adjusted risk difference was -2.6% (lower 95% CI: -11.6%), demonstrating non-inferiority. Individual endpoints in the composite outcome also showed non-inferiority. Conclusion: A fully autonomous AI-based DPP requiring no human coaching is non-inferior to the traditional human-coach based DPP, presenting a promising, scalable alternative for adults with prediabetes. Disclosure N.N. Mathioudakis: None. M.S. Abusamaan: None. M.E. Alderfer: None. D. Alver: None. A.S. Dobs: None. B. Kane: None. B. Lalani: None. J. McGready: None. K. Riekert: None. B. Ringham: None. F. Vandi: None. A.A. Wanigatunga: None. D. Zade: None. N.M. Maruthur: None. Funding The National Institute of Diabetes and Digestive and Kidney Diseases (R01DK125780).","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"45 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db25-1956-lb","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction and Objective: Prediabetes is highly prevalent, yet few patients receive evidence-based behavioral lifestyle support. Artificial intelligence (AI) may offer a scalable approach to diabetes prevention. This study evaluated whether a fully automated AI-based diabetes prevention program (ai-DPP), consisting of a mobile app and digital body weight scale, is non-inferior to a traditional human coach-based DPP (h-DPP) in adults with prediabetes and overweight or obesity. Methods: We conducted a two-site, pragmatic, RCT involving adults with prediabetes and overweight or obesity (NCT05056376). Participants were randomly assigned (1:1) to either an ai-DPP (Sweetch Health, Ltd) or a CDC-recognized h-DPP for a 12-month intervention. Physical activity was objectively measured using actigraphy. The primary endpoint, assessed at 12 months, was the CDC-defined composite diabetes risk reduction outcome, including achieving 5% weight loss, 4% weight loss plus 150 minutes of weekly physical activity, or a 0.2 reduction in A1C. The pre-specified non-inferiority margin was 15 percentage points. The primary outcome was analyzed using a modified intention-to-treat (mITT) approach, including participants with available 12-month data who did not use prohibited medications. Results: Of 427 screened, 368 were enrolled (183 ai-DPP, 185 h-DPP). Trial completion (85.1%) and prohibited medication use (3.5%) were similar between arms, leaving 300 (151 ai-DPP, 149 h-DPP) in the mITT analysis. Achievement of the primary outcome was similar between groups (ai-DPP: 35.8%, h-DPP: 35.6%; p = 0.97). The age - and sex-adjusted risk difference was -2.6% (lower 95% CI: -11.6%), demonstrating non-inferiority. Individual endpoints in the composite outcome also showed non-inferiority. Conclusion: A fully autonomous AI-based DPP requiring no human coaching is non-inferior to the traditional human-coach based DPP, presenting a promising, scalable alternative for adults with prediabetes. Disclosure N.N. Mathioudakis: None. M.S. Abusamaan: None. M.E. Alderfer: None. D. Alver: None. A.S. Dobs: None. B. Kane: None. B. Lalani: None. J. McGready: None. K. Riekert: None. B. Ringham: None. F. Vandi: None. A.A. Wanigatunga: None. D. Zade: None. N.M. Maruthur: None. Funding The National Institute of Diabetes and Digestive and Kidney Diseases (R01DK125780).
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.