{"title":"Free streaming of warm wave dark matter in modified expansion histories","authors":"Andrew J. Long and Moira Venegas","doi":"10.1088/1475-7516/2025/06/043","DOIUrl":null,"url":null,"abstract":"In models of warm dark matter, there is an appreciable population of high momentum particles in the early universe, which free stream out of primordial over/under densities, thereby prohibiting the growth of structure on small length scales. The distance that a dark matter particle travels without obstruction, known as the free streaming length, depends on the particle's mass and momentum, but also on the cosmological expansion rate. In this way, measurements of the linear matter power spectrum serve to probe warm dark matter as well as the cosmological expansion history. In this work, we focus on ultra-light warm wave dark matter (WWDM) characterized by a typical comoving momentum q* and mass m. We first derive constraints on the WWDM parameter space (q*, m) using Lyman-α forest observations due to a combination of the free-streaming effect and the white-noise effect. We next assess how the free streaming of WWDM is affected by three modified expansion histories: early matter domination, early dark energy, and very early dark energy.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"38 1","pages":"043"},"PeriodicalIF":5.3000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/06/043","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In models of warm dark matter, there is an appreciable population of high momentum particles in the early universe, which free stream out of primordial over/under densities, thereby prohibiting the growth of structure on small length scales. The distance that a dark matter particle travels without obstruction, known as the free streaming length, depends on the particle's mass and momentum, but also on the cosmological expansion rate. In this way, measurements of the linear matter power spectrum serve to probe warm dark matter as well as the cosmological expansion history. In this work, we focus on ultra-light warm wave dark matter (WWDM) characterized by a typical comoving momentum q* and mass m. We first derive constraints on the WWDM parameter space (q*, m) using Lyman-α forest observations due to a combination of the free-streaming effect and the white-noise effect. We next assess how the free streaming of WWDM is affected by three modified expansion histories: early matter domination, early dark energy, and very early dark energy.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.