The Brownian loop measure on Riemann surfaces and applications to length spectra

IF 3.1 1区 数学 Q1 MATHEMATICS
Yilin Wang, Yuhao Xue
{"title":"The Brownian loop measure on Riemann surfaces and applications to length spectra","authors":"Yilin Wang, Yuhao Xue","doi":"10.1002/cpa.70003","DOIUrl":null,"url":null,"abstract":"We prove a simple identity relating the length spectrum of a Riemann surface to that of the same surface with an arbitrary number of additional cusps. Our proof uses the Brownian loop measure introduced by Lawler and Werner. In particular, we express the total mass of Brownian loops in a fixed free homotopy class on any Riemann surface in terms of the length of the geodesic representative for the complete constant curvature metric. This expression also allows us to write the electrical thickness of a compact set in separating 0 and , or the Velling–Kirillov Kähler potential, in terms of the Brownian loop measure and the zeta‐regularized determinant of Laplacian as a renormalization of the Brownian loop measure with respect to the length spectrum.","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"25 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/cpa.70003","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a simple identity relating the length spectrum of a Riemann surface to that of the same surface with an arbitrary number of additional cusps. Our proof uses the Brownian loop measure introduced by Lawler and Werner. In particular, we express the total mass of Brownian loops in a fixed free homotopy class on any Riemann surface in terms of the length of the geodesic representative for the complete constant curvature metric. This expression also allows us to write the electrical thickness of a compact set in separating 0 and , or the Velling–Kirillov Kähler potential, in terms of the Brownian loop measure and the zeta‐regularized determinant of Laplacian as a renormalization of the Brownian loop measure with respect to the length spectrum.
黎曼曲面上的布朗环测量及其在长度谱上的应用
我们证明了黎曼曲面的长度谱与具有任意数目附加尖点的同一曲面的长度谱之间的一个简单恒等式。我们的证明使用了Lawler和Werner引入的布朗环测度。特别地,我们用完全常曲率度量的测地线代表的长度来表示任意黎曼曲面上固定自由同伦类中的布朗环的总质量。这个表达式也允许我们写出一个紧集在分离0和时的电厚度,或者Velling-Kirillov Kähler势,用布朗环测度和拉普拉斯的zeta -正则化行列式作为布朗环测度关于长度谱的重整化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信