Workflow for systematic design of electrochemical in operando NMR cells by matching B 0 and B 1 field simulations with experiments.

Q3 Physics and Astronomy
Magnetic resonance (Gottingen, Germany) Pub Date : 2024-11-20 eCollection Date: 2024-01-01 DOI:10.5194/mr-5-167-2024
Michael Schatz, Matthias Streun, Sven Jovanovic, Rüdiger-A Eichel, Josef Granwehr
{"title":"Workflow for systematic design of electrochemical in operando NMR cells by matching <i>B</i> <sub>0</sub> and <i>B</i> <sub>1</sub> field simulations with experiments.","authors":"Michael Schatz, Matthias Streun, Sven Jovanovic, Rüdiger-A Eichel, Josef Granwehr","doi":"10.5194/mr-5-167-2024","DOIUrl":null,"url":null,"abstract":"<p><p>Combining electrochemistry (EC) and nuclear magnetic resonance (NMR) techniques has evolved from a challenging concept to an adaptable and versatile method for battery and electrolysis research. Continuous advancements in NMR hardware have fostered improved homogeneity of the static magnetic field, <math> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> </math> , and the radio frequency field, <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> </math> , yet fundamental challenges caused by introducing essential conductive components into the NMR sensitive volume remain. Cell designs in EC-NMR have largely been improved empirically, at times supported by magnetic field simulations. To propel systematic improvements of cell concepts, a workflow for a qualitative and semi-quantitative description of both <math> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> </math> and <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> </math> distortions is provided in this study. Three-dimensional finite element method (FEM) simulations of both <math> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> </math> and <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> </math> fields were employed to investigate cell structures with electrodes oriented perpendicular to <math> <mrow><msub><mi>B</mi> <mn>0</mn></msub> </mrow> </math> , which allow realistic EC-NMR measurements for battery and electrolysis applications. Particular attention is paid to field distributions in the immediate vicinity of electrodes, which is of prime interest for electrochemical processes. Using a cell with a small void outside the electrochemical active region, the relevance of design details and bubble formation is demonstrated. Moreover, <math> <mrow><msub><mi>B</mi> <mn>1</mn></msub> </mrow> </math> amplifications in coin cells provide an explanation for unexpectedly high sensitivity in previous EC-NMR studies, implying the potential for selective excitation of spins close to electrode surfaces. The correlation of this amplification effect with coin geometry is described by empirical expressions. The simulations were validated experimentally utilising frequency-encoded <sup>1</sup>H profile imaging and chemical shift imaging of <sup>1</sup>H, <sup>13</sup>C, and <sup>23</sup>Na resonances of <math> <mrow><msub><mi>NaHCO</mi> <mn>3</mn></msub> </mrow> </math> electrolyte. Finally, the theoretical and experimental results are distilled into design guidelines for EC-NMR cells.</p>","PeriodicalId":93333,"journal":{"name":"Magnetic resonance (Gottingen, Germany)","volume":"5 2","pages":"167-180"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance (Gottingen, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/mr-5-167-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Combining electrochemistry (EC) and nuclear magnetic resonance (NMR) techniques has evolved from a challenging concept to an adaptable and versatile method for battery and electrolysis research. Continuous advancements in NMR hardware have fostered improved homogeneity of the static magnetic field, B 0 , and the radio frequency field, B 1 , yet fundamental challenges caused by introducing essential conductive components into the NMR sensitive volume remain. Cell designs in EC-NMR have largely been improved empirically, at times supported by magnetic field simulations. To propel systematic improvements of cell concepts, a workflow for a qualitative and semi-quantitative description of both B 0 and B 1 distortions is provided in this study. Three-dimensional finite element method (FEM) simulations of both B 0 and B 1 fields were employed to investigate cell structures with electrodes oriented perpendicular to B 0 , which allow realistic EC-NMR measurements for battery and electrolysis applications. Particular attention is paid to field distributions in the immediate vicinity of electrodes, which is of prime interest for electrochemical processes. Using a cell with a small void outside the electrochemical active region, the relevance of design details and bubble formation is demonstrated. Moreover, B 1 amplifications in coin cells provide an explanation for unexpectedly high sensitivity in previous EC-NMR studies, implying the potential for selective excitation of spins close to electrode surfaces. The correlation of this amplification effect with coin geometry is described by empirical expressions. The simulations were validated experimentally utilising frequency-encoded 1H profile imaging and chemical shift imaging of 1H, 13C, and 23Na resonances of NaHCO 3 electrolyte. Finally, the theoretical and experimental results are distilled into design guidelines for EC-NMR cells.

通过b0和b1的现场模拟与实验相匹配,建立了operando核磁共振池电化学系统设计的工作流程。
电化学(EC)和核磁共振(NMR)技术的结合已经从一个具有挑战性的概念发展成为一种适应性强、用途广泛的电池和电解研究方法。核磁共振硬件的不断进步促进了静态磁场(b0)和射频场(b1)的均匀性改善,但将必要的导电元件引入核磁共振敏感体所带来的基本挑战仍然存在。在EC-NMR中,电池设计在很大程度上已经得到了经验上的改进,有时还得到了磁场模拟的支持。为了推动细胞概念的系统改进,本研究提供了对b0和b1畸变进行定性和半定量描述的工作流程。采用三维有限元法(FEM)模拟b0和b1场,研究电极垂直于b0取向的电池结构,为电池和电解应用提供现实的EC-NMR测量。特别关注电极附近的场分布,这是电化学过程的主要兴趣。利用在电化学活性区外有一个小空隙的电池,证明了设计细节和气泡形成的相关性。此外,硬币细胞中的b1扩增解释了之前EC-NMR研究中意外的高灵敏度,这意味着在电极表面附近有选择性激发自旋的潜力。这种放大效应与硬币几何的相关性由经验表达式描述。利用频率编码1H剖面成像和nahco3电解质的1H、13C和23Na共振的化学位移成像,对模拟结果进行了实验验证。最后,将理论和实验结果提炼成EC-NMR电池的设计指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信