Single-Particle Tracking of AMPA Receptor-Containing Vesicles.

IF 1 Q3 BIOLOGY
Victor C Wong, Deepika Walpita, Zhe J Liu, Erin K O'Shea
{"title":"Single-Particle Tracking of AMPA Receptor-Containing Vesicles.","authors":"Victor C Wong, Deepika Walpita, Zhe J Liu, Erin K O'Shea","doi":"10.21769/BioProtoc.5325","DOIUrl":null,"url":null,"abstract":"<p><p>AMPA-type receptors are transported large distances to support synaptic plasticity at distal dendritic locations. Studying the motion of AMPA receptor<sup>+</sup> vesicles can improve our understanding of the mechanisms that underlie learning and memory. Nevertheless, technical challenges that prevent the visualization of AMPA receptor<sup>+</sup> vesicles limit our ability to study how these vesicles are trafficked. Existing methods rely on the overexpression of fluorescent protein-tagged AMPA receptors from plasmids, resulting in a saturated signal that obscures vesicles. Photobleaching must be applied to detect individual AMPA receptor<sup>+</sup> vesicles, which may eliminate important vesicle populations from analysis. Here, we present a protocol to study AMPA receptor<sup>+</sup> vesicles that addresses these challenges by 1) tagging AMPA receptors expressed from native loci with HaloTag and 2) employing a block-and-chase strategy with Janelia Fluor-conjugated HaloTag ligand to achieve sparse AMPA receptor labeling that obviates the need for photobleaching. After timelapse imaging is performed, AMPA receptor<sup>+</sup> vesicles can be identified during image analysis, and their motion can be characterized using a single-particle tracking pipeline. Key features • Track and characterize the motion of AMPAR GluA1<sup>+</sup> vesicles in cultured rat hippocampal neurons. • GluA1 tagged with HaloTag (GluA1-HT) is expressed from native <i>Gria1</i> loci to avoid overexpression. • Sparse GluA1-HT labeling densities can be achieved without photobleaching via a block-and-chase strategy that utilizes Janelia Fluor (JF) dyes conjugated to HaloTag ligand (HTL). • GluA1-HT<sup>+</sup> vesicles are identified during image analysis, and their motion is characterized using single-particle tracking (SPT) and hidden Markov modeling with Bayesian model selection (HMM-Bayes).</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 11","pages":"e5325"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12177357/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AMPA-type receptors are transported large distances to support synaptic plasticity at distal dendritic locations. Studying the motion of AMPA receptor+ vesicles can improve our understanding of the mechanisms that underlie learning and memory. Nevertheless, technical challenges that prevent the visualization of AMPA receptor+ vesicles limit our ability to study how these vesicles are trafficked. Existing methods rely on the overexpression of fluorescent protein-tagged AMPA receptors from plasmids, resulting in a saturated signal that obscures vesicles. Photobleaching must be applied to detect individual AMPA receptor+ vesicles, which may eliminate important vesicle populations from analysis. Here, we present a protocol to study AMPA receptor+ vesicles that addresses these challenges by 1) tagging AMPA receptors expressed from native loci with HaloTag and 2) employing a block-and-chase strategy with Janelia Fluor-conjugated HaloTag ligand to achieve sparse AMPA receptor labeling that obviates the need for photobleaching. After timelapse imaging is performed, AMPA receptor+ vesicles can be identified during image analysis, and their motion can be characterized using a single-particle tracking pipeline. Key features • Track and characterize the motion of AMPAR GluA1+ vesicles in cultured rat hippocampal neurons. • GluA1 tagged with HaloTag (GluA1-HT) is expressed from native Gria1 loci to avoid overexpression. • Sparse GluA1-HT labeling densities can be achieved without photobleaching via a block-and-chase strategy that utilizes Janelia Fluor (JF) dyes conjugated to HaloTag ligand (HTL). • GluA1-HT+ vesicles are identified during image analysis, and their motion is characterized using single-particle tracking (SPT) and hidden Markov modeling with Bayesian model selection (HMM-Bayes).

含AMPA受体囊泡的单粒子跟踪。
ampa型受体被远距离运输以支持远端树突位置的突触可塑性。研究AMPA受体+囊泡的运动可以提高我们对学习和记忆机制的理解。然而,阻碍AMPA受体+囊泡可视化的技术挑战限制了我们研究这些囊泡如何运输的能力。现有的方法依赖于质粒中荧光蛋白标记的AMPA受体的过表达,从而产生饱和信号,使囊泡模糊。光漂白必须用于检测单个AMPA受体+囊泡,这可能会从分析中消除重要的囊泡群。在这里,我们提出了一种研究AMPA受体+囊泡的方案,通过以下方法解决了这些挑战:1)用HaloTag标记天然基因座表达的AMPA受体;2)使用Janelia荧光共轭HaloTag配体的阻断追赶策略,实现AMPA受体的稀疏标记,从而避免了光漂白的需要。在进行延时成像后,可以在图像分析中识别AMPA受体+囊泡,并使用单粒子跟踪管道表征其运动。•跟踪和表征AMPAR GluA1+囊泡在培养大鼠海马神经元中的运动。•用HaloTag标记的GluA1 (GluA1- ht)从原生Gria1位点表达,避免过表达。•稀疏的GluA1-HT标记密度可以通过利用Janelia Fluor (JF)染料偶联到HaloTag配体(HTL)的阻滞追逐策略实现,而无需光漂白。•在图像分析过程中识别GluA1-HT+囊泡,并使用单粒子跟踪(SPT)和隐马尔可夫建模与贝叶斯模型选择(HMM-Bayes)来表征它们的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信