Analyzing Llama 3-based Approach for Axiom Translation from Ontologies.

CEUR workshop proceedings Pub Date : 2024-11-01
Xubing Hao, Licong Cui, Cui Tao, Kirk Roberts, Muhammad Amith
{"title":"Analyzing Llama 3-based Approach for Axiom Translation from Ontologies.","authors":"Xubing Hao, Licong Cui, Cui Tao, Kirk Roberts, Muhammad Amith","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Ontology development involves a top-down approach where ontology engineers and domain experts collaboratively define and evaluate ontological elements and axioms. Translating ontology axioms into natural language can significantly aid in ontology evaluation by making the content more understandable to subject matter experts who may lack a background in knowledge engineering. In this preliminary study, we investigate the potential of large language models (LLMs) in axiom translation from ontologies to facilitate ontology evaluation. We utilize Llama 3 to translate 1,192 ontology axioms across 19 distinct axiom types from five published ontologies. Results show that 163 (13.67%) of the Llama 3 translation of the axiom are accurately represented, 268 (22.48%) are not accurately represented, and 761 (63.84%) are partially accurate. Our manual evaluation of the Llama 3 translation indicates some competency in producing hierarchical natural language equivalents while revealing some limitations when translating complex axioms. Nonetheless, there are opportunities to improve the results with few-shot training or using LLMs to provide support in knowledge engineering for ontologies.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":"3853 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12178606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ontology development involves a top-down approach where ontology engineers and domain experts collaboratively define and evaluate ontological elements and axioms. Translating ontology axioms into natural language can significantly aid in ontology evaluation by making the content more understandable to subject matter experts who may lack a background in knowledge engineering. In this preliminary study, we investigate the potential of large language models (LLMs) in axiom translation from ontologies to facilitate ontology evaluation. We utilize Llama 3 to translate 1,192 ontology axioms across 19 distinct axiom types from five published ontologies. Results show that 163 (13.67%) of the Llama 3 translation of the axiom are accurately represented, 268 (22.48%) are not accurately represented, and 761 (63.84%) are partially accurate. Our manual evaluation of the Llama 3 translation indicates some competency in producing hierarchical natural language equivalents while revealing some limitations when translating complex axioms. Nonetheless, there are opportunities to improve the results with few-shot training or using LLMs to provide support in knowledge engineering for ontologies.

基于Llama 3的本体公理翻译方法分析
本体开发涉及自顶向下的方法,其中本体工程师和领域专家协作定义和评估本体元素和公理。将本体公理翻译成自然语言可以使缺乏知识工程背景的主题专家更容易理解本体的内容,从而极大地帮助本体评估。在这项初步研究中,我们研究了大型语言模型(llm)在从本体翻译公理以促进本体评估方面的潜力。我们利用Llama 3翻译了来自5个已发表的本体的19种不同公理类型的1192个本体公理。结果表明,对该公理的Llama 3翻译,163个(13.67%)被准确表示,268个(22.48%)未被准确表示,761个(63.84%)部分准确。我们对Llama 3翻译的人工评估表明,在产生分层自然语言等价物方面有一定的能力,同时也揭示了翻译复杂公理时的一些局限性。尽管如此,还是有机会通过少量的培训或使用法学硕士为本体的知识工程提供支持来改善结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信