Samuel Gingras, Alexandre St-Jean, Jean-Sébastien Plante
{"title":"Preliminary investigation of the design space of geared magnetorheological actuators for safer robotic manipulators.","authors":"Samuel Gingras, Alexandre St-Jean, Jean-Sébastien Plante","doi":"10.3389/frobt.2025.1581651","DOIUrl":null,"url":null,"abstract":"<p><p>Geared magnetorheological (MR) actuators have the potential to provide safe and fast physical interactions between human and machine due to their low inertia and high bandwidth. The use of MR actuators in collaborative robotics serial manipulators is only emerging and the design space of this approach is unknown. This paper provides a preliminary understanding of this design space by studying how much gearing can be used between the MR actuators and the joint outputs while maintaining adequate safety levels for collaborative tasks. An analytical collision model is derived for a 6 degrees-of-freedom serial manipulator based on the geometry of the well-known UR5e robot. Model validity is confirmed by comparing predictions to experimental collision data from two robots, a UR5e and a MR5 equivalent. The model is then used to study the impact of gearing level on safety during eventual collisions with human. Results show that for both technologies, robot safety is governed by the balance between the reflected mass due to structural mass and actuator rotational inertia. Results show that, for the UR5e geometry studied in this paper, MR actuators have the potential to reduce the reflected mass in collisions by a factor ranging from 2 to 6 while keeping gearing ratios above 100:1. The paper also briefly studies the influence of robot shape on optimal gearing ratios showing that smaller robots with shorter range have lower structural mass and, thus, proportionally benefit even more of MR actuators. Delocalizing wrist actuators to the elbow has a similar impact since it also reduces structural mass. In all, this work suggests that MR actuators have a strong potential to improve the \"hapticness\" of collaborative robots while maintaining high gearing ratios.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1581651"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12176604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1581651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Geared magnetorheological (MR) actuators have the potential to provide safe and fast physical interactions between human and machine due to their low inertia and high bandwidth. The use of MR actuators in collaborative robotics serial manipulators is only emerging and the design space of this approach is unknown. This paper provides a preliminary understanding of this design space by studying how much gearing can be used between the MR actuators and the joint outputs while maintaining adequate safety levels for collaborative tasks. An analytical collision model is derived for a 6 degrees-of-freedom serial manipulator based on the geometry of the well-known UR5e robot. Model validity is confirmed by comparing predictions to experimental collision data from two robots, a UR5e and a MR5 equivalent. The model is then used to study the impact of gearing level on safety during eventual collisions with human. Results show that for both technologies, robot safety is governed by the balance between the reflected mass due to structural mass and actuator rotational inertia. Results show that, for the UR5e geometry studied in this paper, MR actuators have the potential to reduce the reflected mass in collisions by a factor ranging from 2 to 6 while keeping gearing ratios above 100:1. The paper also briefly studies the influence of robot shape on optimal gearing ratios showing that smaller robots with shorter range have lower structural mass and, thus, proportionally benefit even more of MR actuators. Delocalizing wrist actuators to the elbow has a similar impact since it also reduces structural mass. In all, this work suggests that MR actuators have a strong potential to improve the "hapticness" of collaborative robots while maintaining high gearing ratios.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.