{"title":"P2X3 receptors in the paraventricular hypothalamus: a specific target for visceral pain.","authors":"Xiu-Min Hu, Yong Tang, Peter Illes","doi":"10.1007/s11302-025-10099-2","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent article published in Neuron, Li et al. (Neuron 112(22):3734-3749.e5, 2024) accomplished a major scientific advance by reporting that ATP-sensitive P2X3 receptor-channels (P2X3Rs) in the paraventricular hypothalamus (PVH) specifically regulate visceral pain without affecting somatic pain. On the other hand, vasoactive intestinal polypeptide-sensing receptors (VIPR2) selectively process somatic pain without altering visceral pain. Function-dependent laser capture microdissection sequencing (fLCM-Seq) and immunohistochemistry demonstrated that P2X3Rs and VIPR2 have different transcriptional profiles and belong to the colorectal distension (CRD) and von Frey filament (VFF)-stimulated subgroups of PVH neurons, respectively. An anterograde tracing strategy, in which green fluorescent protein (GFP) was selectively expressed in CRD-labeled or VFF-labeled PVH neurons, showed that PVH<sup>P2X3R+</sup> neuronal projections terminated exclusively at the ventral part of the lateral septal nucleus (LSV) while the PVH<sup>VIPR2+</sup> neuronal projections terminated at the caudal part of the zona incerta (ZIC). The PVH<sup>P2X3R+</sup> circuit selectively responded to visceral pain while remaining unresponsive to somatic pain. By contrast, the PVH<sup>VIPR2+</sup> circuit selectively responded to somatic pain, while it did not react to visceral pain. Knockdown of P2X3R expression in PVH neurons enhanced the visceral pain threshold without affecting somatic nociception, and the reverse findings were true for the knockdown of the VIPR2 expressing PVH neurons. All these results provide possible new strategies based on central-targeted therapies for the future treatment of visceral and somatic pain, respectively.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-025-10099-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent article published in Neuron, Li et al. (Neuron 112(22):3734-3749.e5, 2024) accomplished a major scientific advance by reporting that ATP-sensitive P2X3 receptor-channels (P2X3Rs) in the paraventricular hypothalamus (PVH) specifically regulate visceral pain without affecting somatic pain. On the other hand, vasoactive intestinal polypeptide-sensing receptors (VIPR2) selectively process somatic pain without altering visceral pain. Function-dependent laser capture microdissection sequencing (fLCM-Seq) and immunohistochemistry demonstrated that P2X3Rs and VIPR2 have different transcriptional profiles and belong to the colorectal distension (CRD) and von Frey filament (VFF)-stimulated subgroups of PVH neurons, respectively. An anterograde tracing strategy, in which green fluorescent protein (GFP) was selectively expressed in CRD-labeled or VFF-labeled PVH neurons, showed that PVHP2X3R+ neuronal projections terminated exclusively at the ventral part of the lateral septal nucleus (LSV) while the PVHVIPR2+ neuronal projections terminated at the caudal part of the zona incerta (ZIC). The PVHP2X3R+ circuit selectively responded to visceral pain while remaining unresponsive to somatic pain. By contrast, the PVHVIPR2+ circuit selectively responded to somatic pain, while it did not react to visceral pain. Knockdown of P2X3R expression in PVH neurons enhanced the visceral pain threshold without affecting somatic nociception, and the reverse findings were true for the knockdown of the VIPR2 expressing PVH neurons. All these results provide possible new strategies based on central-targeted therapies for the future treatment of visceral and somatic pain, respectively.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.