An isotope dilution-liquid chromatography-tandem mass spectrometry based candidate reference measurement procedure for the simultaneous quantification of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum and plasma.
Kerstin Kandler, Neeraj Singh, Friederike Bauland, Elie Fux, Andrea Geistanger, Christian Geletneky, Judith Taibon
{"title":"An isotope dilution-liquid chromatography-tandem mass spectrometry based candidate reference measurement procedure for the simultaneous quantification of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum and plasma.","authors":"Kerstin Kandler, Neeraj Singh, Friederike Bauland, Elie Fux, Andrea Geistanger, Christian Geletneky, Judith Taibon","doi":"10.1515/cclm-2024-1138","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3) in human serum and plasma is presented.</p><p><strong>Methods: </strong>Quantitative Nuclear Magnetic Resonance (qNMR) spectroscopic methodology has been utilized to assign absolute content (g/g) and International System of Units (SI)-traceability to the reference materials used as primary calibrators. This RMP was developed for the simultaneous quantification of 25OHD2 and 25OHD3 in human samples, utilizing supported liquid extraction (SLE) clean-up and a two-dimensional heart-cut ID-LC-MS/MS method to minimize matrix effects and prevent the co-elution of 3-Epi-25OHD3 and 3-Epi-25OHD2. The method underwent validation in accordance with current guidelines. Selectivity was assessed using spiked samples. To evaluate potential matrix effects, a post-column infusion experiment and a comparison of standard line slopes were performed. A 5-day validation study was conducted to determine precision, accuracy and trueness of the method. Measurement uncertainty for reference value assignment was evaluated in line with the Guide to the Expression of Uncertainty in Measurement (GUM). Equivalence to Joint Committee on Traceability in Laboratory Medicine (JCTLM) listed RMPs was demonstrated through the participation in the CDC Vitamin D Standardization-Certification Program (VDSCP) as well as the RELA scheme.</p><p><strong>Results: </strong>The RMP enabled the quantification of 25OHD2 and 25OHD3 within the range of 1.50 ng/mL-180 ng/mL (3.64-436 nmol/L for 25OHD2 and 3.74-449 nmol/L for 25OHD3), without interference from their respective epimer and no evidence of matrix effects. Intermediate precision was determined to be ≤4.0 % for 25OHD2 and ≤3.6 % for 25OHD3, while repeatability was ≤3.3 % for 25OHD2 and ≤2.9 % for 25OHD3 across all concentration levels. The relative mean bias for the secondary reference materials varied from -1.0 to 1.1 %, regardless of the analyte. For the spiked samples, the relative mean bias ranged from -4.2 to 1.0 % for 25OHD2 and from -3.9 to 0.9 % for 25OHD3, irrespective of all levels and matrices. Expanded measurement uncertainties (k=2) for target value assignment (n=6) were ≤3.9 % for 25OHD2 and ≤3.2 % for 25OHD3. Participation in the VDSCP and the RELA scheme showed a good agreement with results from the JCTLM listed RMPs and laboratories.</p><p><strong>Conclusions: </strong>The RMP enables the accurate, precise and consistent determination of 25OHD3 and 25OHD2. The robust performance of this method supports standardization of routine assays and guarantees traceability in the measurement of individual patient samples.</p>","PeriodicalId":10390,"journal":{"name":"Clinical chemistry and laboratory medicine","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry and laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/cclm-2024-1138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of 25-hydroxyvitamin D2 (25OHD2) and 25-hydroxyvitamin D3 (25OHD3) in human serum and plasma is presented.
Methods: Quantitative Nuclear Magnetic Resonance (qNMR) spectroscopic methodology has been utilized to assign absolute content (g/g) and International System of Units (SI)-traceability to the reference materials used as primary calibrators. This RMP was developed for the simultaneous quantification of 25OHD2 and 25OHD3 in human samples, utilizing supported liquid extraction (SLE) clean-up and a two-dimensional heart-cut ID-LC-MS/MS method to minimize matrix effects and prevent the co-elution of 3-Epi-25OHD3 and 3-Epi-25OHD2. The method underwent validation in accordance with current guidelines. Selectivity was assessed using spiked samples. To evaluate potential matrix effects, a post-column infusion experiment and a comparison of standard line slopes were performed. A 5-day validation study was conducted to determine precision, accuracy and trueness of the method. Measurement uncertainty for reference value assignment was evaluated in line with the Guide to the Expression of Uncertainty in Measurement (GUM). Equivalence to Joint Committee on Traceability in Laboratory Medicine (JCTLM) listed RMPs was demonstrated through the participation in the CDC Vitamin D Standardization-Certification Program (VDSCP) as well as the RELA scheme.
Results: The RMP enabled the quantification of 25OHD2 and 25OHD3 within the range of 1.50 ng/mL-180 ng/mL (3.64-436 nmol/L for 25OHD2 and 3.74-449 nmol/L for 25OHD3), without interference from their respective epimer and no evidence of matrix effects. Intermediate precision was determined to be ≤4.0 % for 25OHD2 and ≤3.6 % for 25OHD3, while repeatability was ≤3.3 % for 25OHD2 and ≤2.9 % for 25OHD3 across all concentration levels. The relative mean bias for the secondary reference materials varied from -1.0 to 1.1 %, regardless of the analyte. For the spiked samples, the relative mean bias ranged from -4.2 to 1.0 % for 25OHD2 and from -3.9 to 0.9 % for 25OHD3, irrespective of all levels and matrices. Expanded measurement uncertainties (k=2) for target value assignment (n=6) were ≤3.9 % for 25OHD2 and ≤3.2 % for 25OHD3. Participation in the VDSCP and the RELA scheme showed a good agreement with results from the JCTLM listed RMPs and laboratories.
Conclusions: The RMP enables the accurate, precise and consistent determination of 25OHD3 and 25OHD2. The robust performance of this method supports standardization of routine assays and guarantees traceability in the measurement of individual patient samples.
期刊介绍:
Clinical Chemistry and Laboratory Medicine (CCLM) publishes articles on novel teaching and training methods applicable to laboratory medicine. CCLM welcomes contributions on the progress in fundamental and applied research and cutting-edge clinical laboratory medicine. It is one of the leading journals in the field, with an impact factor over 3. CCLM is issued monthly, and it is published in print and electronically.
CCLM is the official journal of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) and publishes regularly EFLM recommendations and news. CCLM is the official journal of the National Societies from Austria (ÖGLMKC); Belgium (RBSLM); Germany (DGKL); Hungary (MLDT); Ireland (ACBI); Italy (SIBioC); Portugal (SPML); and Slovenia (SZKK); and it is affiliated to AACB (Australia) and SFBC (France).
Topics:
- clinical biochemistry
- clinical genomics and molecular biology
- clinical haematology and coagulation
- clinical immunology and autoimmunity
- clinical microbiology
- drug monitoring and analysis
- evaluation of diagnostic biomarkers
- disease-oriented topics (cardiovascular disease, cancer diagnostics, diabetes)
- new reagents, instrumentation and technologies
- new methodologies
- reference materials and methods
- reference values and decision limits
- quality and safety in laboratory medicine
- translational laboratory medicine
- clinical metrology
Follow @cclm_degruyter on Twitter!