Oleanolic acid activates the JNK-Sp1-DJ-1 axis to promote mitophagy-mediated neuroprotection in dopaminergic neurons for Parkinson's disease treatment.
{"title":"Oleanolic acid activates the JNK-Sp1-DJ-1 axis to promote mitophagy-mediated neuroprotection in dopaminergic neurons for Parkinson's disease treatment.","authors":"Han-Bin Yang, Chien-Hsing Lee, Nguyen Thao Nhung, Shih-Ya Hung","doi":"10.1007/s12272-025-01550-4","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by mitochondrial dysfunction and oxidative stress. Although levodopa remains the gold standard for managing PD motor symptoms, it lacks neuroprotective and disease-modifying effects, highlighting the need for new neuroprotective therapies. Mitophagy, the selective mitochondrial degradation by autophagy, is critical for neuronal health. Oleanolic acid, a natural hepatoprotective compound, shows uncertain efficacy in PD treatment. This study investigated the neuroprotective effects and underlying mechanisms of oleanolic acid using the 1-methyl-4-phenylpyridinium (MPP⁺)-induced cellular model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In vitro, oleanolic acid demonstrated dopaminergic neuroprotection by reducing mitochondrial dysfunction and reactive oxygen species accumulation in PD cells. It upregulated the mitophagic protein DJ-1, enhancing the sequestration of damaged mitochondria into autophagosomes by mitophagy. DJ-1 knockdown attenuated oleanolic acid's neuroprotection, confirming DJ-1's role in oleanolic acid's action. In vivo, pre-treatment with oleanolic acid in MPTP-induced PD mice prevented PD-like motor symptoms, reduced neuronal death in the substantia nigra, and mitigated striatal neurodegeneration. Post-treatment with oleanolic acid not only reduced these effects but also increased Bcl-2 and DJ-1 levels in the substantia nigra and striatum. In vitro, oleanolic acid activated JNK for Sp1 upregulation and nuclear translocation, which induced DJ-1 expression. Computational modeling predicted that oleanolic acid likely interacts with JNK, suggesting this binding might be necessary for JNK-Sp1-DJ-1 axis activation for mitophagy-driven neuroprotection. These results highlight oleanolic acid's potential as a therapeutic agent in PD prevention and treatment via the JNK-Sp1-DJ-1 pathway. Further studies are required to validate its efficacy.</p>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12272-025-01550-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by mitochondrial dysfunction and oxidative stress. Although levodopa remains the gold standard for managing PD motor symptoms, it lacks neuroprotective and disease-modifying effects, highlighting the need for new neuroprotective therapies. Mitophagy, the selective mitochondrial degradation by autophagy, is critical for neuronal health. Oleanolic acid, a natural hepatoprotective compound, shows uncertain efficacy in PD treatment. This study investigated the neuroprotective effects and underlying mechanisms of oleanolic acid using the 1-methyl-4-phenylpyridinium (MPP⁺)-induced cellular model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In vitro, oleanolic acid demonstrated dopaminergic neuroprotection by reducing mitochondrial dysfunction and reactive oxygen species accumulation in PD cells. It upregulated the mitophagic protein DJ-1, enhancing the sequestration of damaged mitochondria into autophagosomes by mitophagy. DJ-1 knockdown attenuated oleanolic acid's neuroprotection, confirming DJ-1's role in oleanolic acid's action. In vivo, pre-treatment with oleanolic acid in MPTP-induced PD mice prevented PD-like motor symptoms, reduced neuronal death in the substantia nigra, and mitigated striatal neurodegeneration. Post-treatment with oleanolic acid not only reduced these effects but also increased Bcl-2 and DJ-1 levels in the substantia nigra and striatum. In vitro, oleanolic acid activated JNK for Sp1 upregulation and nuclear translocation, which induced DJ-1 expression. Computational modeling predicted that oleanolic acid likely interacts with JNK, suggesting this binding might be necessary for JNK-Sp1-DJ-1 axis activation for mitophagy-driven neuroprotection. These results highlight oleanolic acid's potential as a therapeutic agent in PD prevention and treatment via the JNK-Sp1-DJ-1 pathway. Further studies are required to validate its efficacy.
期刊介绍:
Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.