Charles N Olmsted, Mark Gahler, Eric Roden, Ben Peterson, James Lazarcik, Patricia Q Tran, Maureen Berg, Donald A Bryant, Danielle Goudeau, Rex R Malmstrom, Mohan Qin, Katherine D McMahon
{"title":"Cryptic cycling by electroactive bacterioplankton in Trout Bog Lake.","authors":"Charles N Olmsted, Mark Gahler, Eric Roden, Ben Peterson, James Lazarcik, Patricia Q Tran, Maureen Berg, Donald A Bryant, Danielle Goudeau, Rex R Malmstrom, Mohan Qin, Katherine D McMahon","doi":"10.1128/aem.01789-24","DOIUrl":null,"url":null,"abstract":"<p><p>The potential for extracellular electron transfer (EET) is a prevailing genomic feature of humic lake bacterioplankton. However, there has been little evidence for the substantial ecological contribution predicted by genetics. We hypothesized that anoxygenic phototrophic electrotrophs and accompanying heterotrophic electrogens cycle dissolved organic matter (DOM) between oxidized and reduced states. We predicted that such bacterioplankton would exhibit diel-scale oscillations due to the light dependency of photosynthesis. Using Trout Bog Lake in Wisconsin, USA, as our model ecosystem, we profiled the water column with depth-discrete metagenomic, physiochemical, and electrochemical analyses. We observed variation in oxidation reduction potential (ORP) in response to sunlight, initiating at depths populated by anoxygenic phototrophs with EET genes. We developed an automated buoy to measure electric current flow between many pairs of electrodes simultaneously, observing correlation in electron consumption to sunlight. Our results, combined with published metatranscriptomic analysis, indicate the occurrence of electron cycling between phototrophic oxidation (electrotrophic metabolism) by <i>Chlorobium</i> and anaerobic respiration (electrogenic metabolism) by <i>Geothrix</i>, involving DOM. We also repeatedly observed gradual seasonal increases in hypolimnion ORP throughout summer. These diel and seasonal patterns imply that electroactive DOM mediates the ecology of electroactive bacteria in lakes, controlling humic lake methane emissions.IMPORTANCEWe investigated the physical, chemical, and redox characteristics of a bog lake and electrodes hung therein to test the hypothesis that dissolved organic matter is being cycled between oxidized and reduced states by electroactive bacterioplankton powered by phototrophy. To do so, we performed field-based analyses on multiple timescales using both established and novel instrumentation. We paired these analyses with recently developed bioinformatics pipelines for metagenomics data to investigate genes that enable electroactive metabolism and accompanying metabolisms. Our results are consistent with our hypothesis and yet upend some of our other expectations. Our findings have implications for understanding greenhouse gas emissions from lakes, including electroactivity as an integral part of lake metabolism throughout more of the anoxic parts of lakes and for a longer portion of the summer than expected. Our results also give a sense of what electroactivity occurs at given depths and provide a strong basis for future studies.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0178924"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Environmental Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/aem.01789-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential for extracellular electron transfer (EET) is a prevailing genomic feature of humic lake bacterioplankton. However, there has been little evidence for the substantial ecological contribution predicted by genetics. We hypothesized that anoxygenic phototrophic electrotrophs and accompanying heterotrophic electrogens cycle dissolved organic matter (DOM) between oxidized and reduced states. We predicted that such bacterioplankton would exhibit diel-scale oscillations due to the light dependency of photosynthesis. Using Trout Bog Lake in Wisconsin, USA, as our model ecosystem, we profiled the water column with depth-discrete metagenomic, physiochemical, and electrochemical analyses. We observed variation in oxidation reduction potential (ORP) in response to sunlight, initiating at depths populated by anoxygenic phototrophs with EET genes. We developed an automated buoy to measure electric current flow between many pairs of electrodes simultaneously, observing correlation in electron consumption to sunlight. Our results, combined with published metatranscriptomic analysis, indicate the occurrence of electron cycling between phototrophic oxidation (electrotrophic metabolism) by Chlorobium and anaerobic respiration (electrogenic metabolism) by Geothrix, involving DOM. We also repeatedly observed gradual seasonal increases in hypolimnion ORP throughout summer. These diel and seasonal patterns imply that electroactive DOM mediates the ecology of electroactive bacteria in lakes, controlling humic lake methane emissions.IMPORTANCEWe investigated the physical, chemical, and redox characteristics of a bog lake and electrodes hung therein to test the hypothesis that dissolved organic matter is being cycled between oxidized and reduced states by electroactive bacterioplankton powered by phototrophy. To do so, we performed field-based analyses on multiple timescales using both established and novel instrumentation. We paired these analyses with recently developed bioinformatics pipelines for metagenomics data to investigate genes that enable electroactive metabolism and accompanying metabolisms. Our results are consistent with our hypothesis and yet upend some of our other expectations. Our findings have implications for understanding greenhouse gas emissions from lakes, including electroactivity as an integral part of lake metabolism throughout more of the anoxic parts of lakes and for a longer portion of the summer than expected. Our results also give a sense of what electroactivity occurs at given depths and provide a strong basis for future studies.
期刊介绍:
Applied and Environmental Microbiology (AEM) publishes papers that make significant contributions to (a) applied microbiology, including biotechnology, protein engineering, bioremediation, and food microbiology, (b) microbial ecology, including environmental, organismic, and genomic microbiology, and (c) interdisciplinary microbiology, including invertebrate microbiology, plant microbiology, aquatic microbiology, and geomicrobiology.