CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13.

IF 5.3 2区 化学 Q1 CHEMISTRY, MEDICINAL
Oleksandra Herasymenko, Madhushika Silva, Abd Al-Aziz A Abu-Saleh, Ayaz Ahmad, Jesus Alvarado-Huayhuaz, Oscar E A Arce, Roly J Armstrong, Cheryl Arrowsmith, Kelly E Bachta, Hartmut Beck, Denes Berta, Mateusz K Bieniek, Vincent Blay, Albina Bolotokova, Philip E Bourne, Marko Breznik, Peter J Brown, Aaron D G Campbell, Emanuele Carosati, Irene Chau, Daniel J Cole, Ben Cree, Wim Dehaen, Katrin Denzinger, Karina Dos Santos Machado, Ian Dunn, Prasannavenkatesh Durai, Kristina Edfeldt, Aled Edwards, Darren Fayne, Daniel Felfoldi, Kallie Friston, Pegah Ghiabi, Elisa Gibson, Judith Günther, Anders Gunnarsson, Alexander Hillisch, Douglas R Houston, Jan Halborg Jensen, Rachel J Harding, Kate S Harris, Laurent Hoffer, Anders Hogner, Joshua T Horton, Scott Houliston, Judd F Hultquist, Ashley Hutchinson, John J Irwin, Marko Jukič, Shubhangi Kandwal, Andrea Karlova, Vittorio L Katis, Ryan P Kich, Dmitri Kireev, David Koes, Nicole L Inniss, Uta Lessel, Sijie Liu, Peter Loppnau, Wei Lu, Sam Martino, Miles McGibbon, Jens Meiler, Akhila Mettu, Sam Money-Kyrle, Rocco Moretti, Yurii S Moroz, Charuvaka Muvva, Joseph A Newman, Leon Obendorf, Brooks Paige, Amit Pandit, Keunwan Park, Sumera Perveen, Rachael Pirie, Gennady Poda, Mykola Protopopov, Vera Pütter, Federico Ricci, Natalie J Roper, Edina Rosta, Margarita Rzhetskaya, Yogesh Sabnis, Karla J F Satchell, Frederico Schmitt Kremer, Thomas Scott, Almagul Seitova, Casper Steinmann, Valerij Talagayev, Olga O Tarkhanova, Natalie J Tatum, Dakota Treleaven, Adriano Velasque Werhli, W Patrick Walters, Xiaowen Wang, Jude Wells, Geoffrey Wells, Yvonne Westermaier, Gerhard Wolber, Lars Wortmann, Jixian Zhang, Zheng Zhao, Shuangjia Zheng, Matthieu Schapira
{"title":"CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13.","authors":"Oleksandra Herasymenko, Madhushika Silva, Abd Al-Aziz A Abu-Saleh, Ayaz Ahmad, Jesus Alvarado-Huayhuaz, Oscar E A Arce, Roly J Armstrong, Cheryl Arrowsmith, Kelly E Bachta, Hartmut Beck, Denes Berta, Mateusz K Bieniek, Vincent Blay, Albina Bolotokova, Philip E Bourne, Marko Breznik, Peter J Brown, Aaron D G Campbell, Emanuele Carosati, Irene Chau, Daniel J Cole, Ben Cree, Wim Dehaen, Katrin Denzinger, Karina Dos Santos Machado, Ian Dunn, Prasannavenkatesh Durai, Kristina Edfeldt, Aled Edwards, Darren Fayne, Daniel Felfoldi, Kallie Friston, Pegah Ghiabi, Elisa Gibson, Judith Günther, Anders Gunnarsson, Alexander Hillisch, Douglas R Houston, Jan Halborg Jensen, Rachel J Harding, Kate S Harris, Laurent Hoffer, Anders Hogner, Joshua T Horton, Scott Houliston, Judd F Hultquist, Ashley Hutchinson, John J Irwin, Marko Jukič, Shubhangi Kandwal, Andrea Karlova, Vittorio L Katis, Ryan P Kich, Dmitri Kireev, David Koes, Nicole L Inniss, Uta Lessel, Sijie Liu, Peter Loppnau, Wei Lu, Sam Martino, Miles McGibbon, Jens Meiler, Akhila Mettu, Sam Money-Kyrle, Rocco Moretti, Yurii S Moroz, Charuvaka Muvva, Joseph A Newman, Leon Obendorf, Brooks Paige, Amit Pandit, Keunwan Park, Sumera Perveen, Rachael Pirie, Gennady Poda, Mykola Protopopov, Vera Pütter, Federico Ricci, Natalie J Roper, Edina Rosta, Margarita Rzhetskaya, Yogesh Sabnis, Karla J F Satchell, Frederico Schmitt Kremer, Thomas Scott, Almagul Seitova, Casper Steinmann, Valerij Talagayev, Olga O Tarkhanova, Natalie J Tatum, Dakota Treleaven, Adriano Velasque Werhli, W Patrick Walters, Xiaowen Wang, Jude Wells, Geoffrey Wells, Yvonne Westermaier, Gerhard Wolber, Lars Wortmann, Jixian Zhang, Zheng Zhao, Shuangjia Zheng, Matthieu Schapira","doi":"10.1021/acs.jcim.5c00535","DOIUrl":null,"url":null,"abstract":"<p><p>A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface plasmon resonance assay. The six best-performing computational workflows used fragment growing, active learning, or conventional virtual screening with and without complementary deep-learning scoring functions. Follow-up functional assays resulted in identification of two compound scaffolds that bound Nsp13 with a <i>K</i><sub>d</sub> below 10 μM and inhibited <i>in vitro</i> helicase activity. Overall, CACHE #2 participants were successful in identifying hit compound scaffolds targeting Nsp13, a central component of the coronavirus replication-transcription complex. Computational design strategies recurrently successful across the first two CACHE challenges include linking or growing docked or crystallized fragments and docking small and diverse libraries to train ultrafast machine-learning models. The CACHE #2 competition reveals how crowd-sourcing ligand prediction efforts using a distinct array of approaches followed with critical biophysical assays can result in novel lead compounds to advance drug discovery efforts.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"6884-6898"},"PeriodicalIF":5.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00535","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface plasmon resonance assay. The six best-performing computational workflows used fragment growing, active learning, or conventional virtual screening with and without complementary deep-learning scoring functions. Follow-up functional assays resulted in identification of two compound scaffolds that bound Nsp13 with a Kd below 10 μM and inhibited in vitro helicase activity. Overall, CACHE #2 participants were successful in identifying hit compound scaffolds targeting Nsp13, a central component of the coronavirus replication-transcription complex. Computational design strategies recurrently successful across the first two CACHE challenges include linking or growing docked or crystallized fragments and docking small and diverse libraries to train ultrafast machine-learning models. The CACHE #2 competition reveals how crowd-sourcing ligand prediction efforts using a distinct array of approaches followed with critical biophysical assays can result in novel lead compounds to advance drug discovery efforts.

CACHE挑战#2:靶向SARS-CoV-2解旋酶Nsp13的RNA位点
对计算命中寻找实验(CACHE)挑战进行了关键评估,以预测SARS-CoV-2 Nsp13解旋酶RNA结合位点的配体,这是一个高度保守的COVID-19靶点。由计算化学家和数据科学家组成的23个参与团队使用蛋白质结构和片段筛选数据,结合先进的计算和机器学习方法,每个团队预测多达100个抑制配体。在所有团队中,预测了1957种化合物,并随后从商业目录中获得用于生物物理分析的化合物。在这些化合物中,0.7%在表面等离子体共振实验中被证实与Nsp13结合。六个表现最好的计算工作流程使用片段增长、主动学习或传统虚拟筛选,并有或没有补充深度学习评分功能。随后的功能分析鉴定出两个复合支架,它们结合Kd值低于10 μM的Nsp13,并抑制了体外解旋酶活性。总体而言,CACHE #2参与者成功地鉴定了靶向Nsp13的靶向化合物支架,Nsp13是冠状病毒复制转录复合物的核心成分。在前两个CACHE挑战中,成功的计算设计策略包括链接或生长对接或结晶的片段,对接小型和多样化的库来训练超快速机器学习模型。CACHE #2竞赛揭示了群体外包配体预测工作如何使用一系列独特的方法,然后进行关键的生物物理分析,从而产生新的先导化合物,从而推进药物发现工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信