PAPR Reduction Technique for Mobile Communication Systems Using Neural Networks

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bianca S. de C. da Silva;Pedro H. C. de Souza;Luciano L. Mendes
{"title":"PAPR Reduction Technique for Mobile Communication Systems Using Neural Networks","authors":"Bianca S. de C. da Silva;Pedro H. C. de Souza;Luciano L. Mendes","doi":"10.1109/TLA.2025.11045671","DOIUrl":null,"url":null,"abstract":"This work proposes a new solution to reduce the PAPR in OFDM systems using NN. The NN leverages a training dataset generated by the MCSA, which fine-tunes the NN for attaining a similar PAPR reduction of the MCSA. Compared to traditional techniques such as the PTS, the proposed solution offers superior performance by achieving a PAPR reduction of up to 4 dB. Nevertheless, a significant advantage is that the trained NN presents a lower computational complexity compared to the MCSA, without compromising its PAPR reduction capabilities","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":"23 7","pages":"556-564"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11045671","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11045671/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a new solution to reduce the PAPR in OFDM systems using NN. The NN leverages a training dataset generated by the MCSA, which fine-tunes the NN for attaining a similar PAPR reduction of the MCSA. Compared to traditional techniques such as the PTS, the proposed solution offers superior performance by achieving a PAPR reduction of up to 4 dB. Nevertheless, a significant advantage is that the trained NN presents a lower computational complexity compared to the MCSA, without compromising its PAPR reduction capabilities
基于神经网络的移动通信系统PAPR降低技术
本文提出了一种利用神经网络降低OFDM系统PAPR的新方法。神经网络利用由MCSA生成的训练数据集,该数据集对神经网络进行微调,以获得与MCSA相似的PAPR减少。与传统技术(如PTS)相比,该解决方案通过实现高达4 dB的PAPR降低,提供了卓越的性能。然而,一个显著的优势是,与MCSA相比,训练后的NN具有较低的计算复杂度,而不会影响其PAPR减少能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信