Complex Variable Design for Power Control of Grid-Forming Inverter

IF 10 1区 工程技术 Q1 ENERGY & FUELS
Xiangjun Quan;Dale Li;Zhixiang Zou;Qinran Hu;Zaijun Wu;Wei Gu;Huiyu Miao
{"title":"Complex Variable Design for Power Control of Grid-Forming Inverter","authors":"Xiangjun Quan;Dale Li;Zhixiang Zou;Qinran Hu;Zaijun Wu;Wei Gu;Huiyu Miao","doi":"10.1109/TSTE.2025.3533971","DOIUrl":null,"url":null,"abstract":"The analysis and design of the grid-forming (GFM) power loop and decoupling control can be challenging due to the coupled high-order system, where active and reactive power controls are typically designed separately using a dual-input-dual-output model. In this letter, we introduce a complex-power-phase-angle (CPPA) model, formulated as a single-input-single-output system for grid-forming inverters. Subsequently, a complex power controller is designed. The proposed control framework allows for the unification of active and reactive power decoupling control through an order-reduced complex transfer function, enhancing the dynamic performance of GFM power control. The robustness and advantages of this method are validated through comprehensive simulation and experimental results.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"16 3","pages":"2255-2258"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10854804/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis and design of the grid-forming (GFM) power loop and decoupling control can be challenging due to the coupled high-order system, where active and reactive power controls are typically designed separately using a dual-input-dual-output model. In this letter, we introduce a complex-power-phase-angle (CPPA) model, formulated as a single-input-single-output system for grid-forming inverters. Subsequently, a complex power controller is designed. The proposed control framework allows for the unification of active and reactive power decoupling control through an order-reduced complex transfer function, enhancing the dynamic performance of GFM power control. The robustness and advantages of this method are validated through comprehensive simulation and experimental results.
成网逆变器功率控制的复杂变量设计
由于耦合高阶系统的特点,电网形成(GFM)功率环和解耦控制的分析和设计具有挑战性,其中有功和无功控制通常使用双输入双输出模型单独设计。在这篇文章中,我们介绍了一个复杂的功率相角(CPPA)模型,它被制定为一个单输入-单输出系统的并网逆变器。随后,设计了一个复杂的功率控制器。该控制框架通过降阶复杂传递函数实现有功和无功解耦控制的统一,提高了GFM功率控制的动态性能。综合仿真和实验结果验证了该方法的鲁棒性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信